DB-GPT/dbgpt/model/adapter/loader.py
2024-01-21 09:57:57 +08:00

427 lines
15 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import logging
from typing import Any, Dict, Optional
from dbgpt.configs.model_config import get_device
from dbgpt.model.adapter.base import LLMModelAdapter
from dbgpt.model.adapter.model_adapter import get_llm_model_adapter
from dbgpt.model.base import ModelType
from dbgpt.model.parameter import (
LlamaCppModelParameters,
ModelParameters,
ProxyModelParameters,
)
from dbgpt.util import get_gpu_memory
from dbgpt.util.parameter_utils import EnvArgumentParser, _genenv_ignoring_key_case
logger = logging.getLogger(__name__)
def _check_multi_gpu_or_4bit_quantization(model_params: ModelParameters):
# TODO: vicuna-v1.5 8-bit quantization info is slow
# TODO: support wizardlm quantization, see: https://huggingface.co/WizardLM/WizardLM-13B-V1.2/discussions/5
# TODO: support internlm quantization
model_name = model_params.model_name.lower()
supported_models = ["llama", "baichuan", "vicuna"]
return any(m in model_name for m in supported_models)
def _check_quantization(model_params: ModelParameters):
model_name = model_params.model_name.lower()
has_quantization = any([model_params.load_8bit or model_params.load_4bit])
if has_quantization:
if model_params.device != "cuda":
logger.warn(
"8-bit quantization and 4-bit quantization just supported by cuda"
)
return False
elif "chatglm" in model_name:
if "int4" not in model_name:
logger.warn(
"chatglm or chatglm2 not support quantization now, see: https://github.com/huggingface/transformers/issues/25228"
)
return False
return has_quantization
def _get_model_real_path(model_name, default_model_path) -> str:
"""Get model real path by model name
priority from high to low:
1. environment variable with key: {model_name}_model_path
2. environment variable with key: model_path
3. default_model_path
"""
env_prefix = model_name + "_"
env_prefix = env_prefix.replace("-", "_")
env_model_path = _genenv_ignoring_key_case("model_path", env_prefix=env_prefix)
if env_model_path:
return env_model_path
return _genenv_ignoring_key_case("model_path", default_value=default_model_path)
class ModelLoader:
"""Model loader is a class for model load
Args: model_path
TODO: multi model support.
"""
def __init__(self, model_path: str, model_name: str = None) -> None:
self.device = get_device()
self.model_path = model_path
self.model_name = model_name
self.prompt_template: str = None
# TODO multi gpu support
def loader(
self,
load_8bit=False,
load_4bit=False,
debug=False,
cpu_offloading=False,
max_gpu_memory: Optional[str] = None,
):
llm_adapter = get_llm_model_adapter(self.model_name, self.model_path)
model_type = llm_adapter.model_type()
param_cls = llm_adapter.model_param_class(model_type)
args_parser = EnvArgumentParser()
# Read the parameters of the model from the environment variable according to the model name prefix, which currently has the highest priority
# vicuna_13b_max_gpu_memory=13Gib or VICUNA_13B_MAX_GPU_MEMORY=13Gib
env_prefix = self.model_name + "_"
env_prefix = env_prefix.replace("-", "_")
model_params = args_parser.parse_args_into_dataclass(
param_cls,
env_prefixes=[env_prefix],
device=self.device,
model_path=self.model_path,
model_name=self.model_name,
max_gpu_memory=max_gpu_memory,
cpu_offloading=cpu_offloading,
load_8bit=load_8bit,
load_4bit=load_4bit,
verbose=debug,
)
self.prompt_template = model_params.prompt_template
logger.info(f"model_params:\n{model_params}")
if model_type == ModelType.HF:
return huggingface_loader(llm_adapter, model_params)
elif model_type == ModelType.LLAMA_CPP:
return llamacpp_loader(llm_adapter, model_params)
else:
raise Exception(f"Unkown model type {model_type}")
def loader_with_params(
self, model_params: ModelParameters, llm_adapter: LLMModelAdapter
):
model_type = llm_adapter.model_type()
self.prompt_template = model_params.prompt_template
if model_type == ModelType.HF:
return huggingface_loader(llm_adapter, model_params)
elif model_type == ModelType.LLAMA_CPP:
return llamacpp_loader(llm_adapter, model_params)
elif model_type == ModelType.PROXY:
# return proxyllm_loader(llm_adapter, model_params)
return llm_adapter.load_from_params(model_params)
elif model_type == ModelType.VLLM:
return llm_adapter.load_from_params(model_params)
else:
raise Exception(f"Unkown model type {model_type}")
def huggingface_loader(llm_adapter: LLMModelAdapter, model_params: ModelParameters):
import torch
from dbgpt.model.llm.compression import compress_module
device = model_params.device
max_memory = None
# if device is cpu or mps. gpu need to be zero
num_gpus = 0
if device == "cpu":
kwargs = {"torch_dtype": torch.float32}
elif device == "cuda":
kwargs = {"torch_dtype": torch.float16}
num_gpus = torch.cuda.device_count()
available_gpu_memory = get_gpu_memory(num_gpus)
max_memory = {
i: str(int(available_gpu_memory[i] * 0.85)) + "GiB" for i in range(num_gpus)
}
if num_gpus != 1:
kwargs["device_map"] = "auto"
if model_params.max_gpu_memory:
logger.info(
f"There has max_gpu_memory from config: {model_params.max_gpu_memory}"
)
max_memory = {i: model_params.max_gpu_memory for i in range(num_gpus)}
kwargs["max_memory"] = max_memory
else:
kwargs["max_memory"] = max_memory
logger.debug(f"max_memory: {max_memory}")
elif device == "mps":
kwargs = {"torch_dtype": torch.float16}
import transformers
version = tuple(int(v) for v in transformers.__version__.split("."))
if version < (4, 35, 0):
from dbgpt.model.llm.monkey_patch import (
replace_llama_attn_with_non_inplace_operations,
)
# NOTE: Recent transformers library seems to fix the mps issue, also
# it has made some changes causing compatibility issues with our
# original patch. So we only apply the patch for older versions.
# Avoid bugs in mps backend by not using in-place operations.
replace_llama_attn_with_non_inplace_operations()
else:
raise ValueError(f"Invalid device: {device}")
model, tokenizer = _try_load_default_quantization_model(
llm_adapter, device, num_gpus, model_params, kwargs
)
if model:
return model, tokenizer
can_quantization = _check_quantization(model_params)
if can_quantization and (num_gpus > 1 or model_params.load_4bit):
if _check_multi_gpu_or_4bit_quantization(model_params):
return load_huggingface_quantization_model(
llm_adapter, model_params, kwargs, max_memory
)
else:
logger.warn(
f"Current model {model_params.model_name} not supported quantization"
)
# default loader
model, tokenizer = llm_adapter.load(model_params.model_path, kwargs)
if model_params.load_8bit and num_gpus == 1 and tokenizer:
# TODO merge current code into `load_huggingface_quantization_model`
compress_module(model, model_params.device)
return _handle_model_and_tokenizer(model, tokenizer, device, num_gpus, model_params)
def _try_load_default_quantization_model(
llm_adapter: LLMModelAdapter,
device: str,
num_gpus: int,
model_params: ModelParameters,
kwargs: Dict[str, Any],
):
"""Try load default quantization model(Support by huggingface default)"""
cloned_kwargs = {k: v for k, v in kwargs.items()}
try:
model, tokenizer = None, None
if device != "cuda":
return None, None
elif model_params.load_8bit and llm_adapter.support_8bit:
cloned_kwargs["load_in_8bit"] = True
model, tokenizer = llm_adapter.load(model_params.model_path, cloned_kwargs)
elif model_params.load_4bit and llm_adapter.support_4bit:
cloned_kwargs["load_in_4bit"] = True
model, tokenizer = llm_adapter.load(model_params.model_path, cloned_kwargs)
if model:
logger.info(
f"Load default quantization model {model_params.model_name} success"
)
return _handle_model_and_tokenizer(
model, tokenizer, device, num_gpus, model_params
)
return None, None
except Exception as e:
logger.warning(
f"Load default quantization model {model_params.model_name} failed, error: {str(e)}"
)
return None, None
def _handle_model_and_tokenizer(
model, tokenizer, device: str, num_gpus: int, model_params: ModelParameters
):
if (
(device == "cuda" and num_gpus == 1 and not model_params.cpu_offloading)
or device == "mps"
and tokenizer
):
try:
model.to(device)
except ValueError:
pass
except AttributeError:
pass
if model_params.verbose:
print(model)
return model, tokenizer
def load_huggingface_quantization_model(
llm_adapter: LLMModelAdapter,
model_params: ModelParameters,
kwargs: Dict,
max_memory: Dict[int, str],
):
import torch
try:
import transformers
from accelerate import init_empty_weights
from accelerate.utils import infer_auto_device_map
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
BitsAndBytesConfig,
LlamaForCausalLM,
LlamaTokenizer,
)
except ImportError as exc:
raise ValueError(
"Could not import depend python package "
"Please install it with `pip install transformers` "
"`pip install bitsandbytes``pip install accelerate`."
) from exc
if (
"llama-2" in model_params.model_name.lower()
and not transformers.__version__ >= "4.31.0"
):
raise ValueError(
"Llama-2 quantization require transformers.__version__>=4.31.0"
)
params = {"low_cpu_mem_usage": True}
params["low_cpu_mem_usage"] = True
params["device_map"] = "auto"
torch_dtype = kwargs.get("torch_dtype")
if model_params.load_4bit:
compute_dtype = None
if model_params.compute_dtype and model_params.compute_dtype in [
"bfloat16",
"float16",
"float32",
]:
compute_dtype = eval("torch.{}".format(model_params.compute_dtype))
quantization_config_params = {
"load_in_4bit": True,
"bnb_4bit_compute_dtype": compute_dtype,
"bnb_4bit_quant_type": model_params.quant_type,
"bnb_4bit_use_double_quant": model_params.use_double_quant,
}
logger.warn(
"Using the following 4-bit params: " + str(quantization_config_params)
)
params["quantization_config"] = BitsAndBytesConfig(**quantization_config_params)
elif model_params.load_8bit and max_memory:
params["quantization_config"] = BitsAndBytesConfig(
load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True
)
elif model_params.load_in_8bit:
params["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
params["torch_dtype"] = torch_dtype if torch_dtype else torch.float16
params["max_memory"] = max_memory
if "chatglm" in model_params.model_name.lower():
LoaderClass = AutoModel
else:
config = AutoConfig.from_pretrained(
model_params.model_path, trust_remote_code=model_params.trust_remote_code
)
if config.to_dict().get("is_encoder_decoder", False):
LoaderClass = AutoModelForSeq2SeqLM
else:
LoaderClass = AutoModelForCausalLM
if model_params.load_8bit and max_memory is not None:
config = AutoConfig.from_pretrained(
model_params.model_path, trust_remote_code=model_params.trust_remote_code
)
with init_empty_weights():
model = LoaderClass.from_config(
config, trust_remote_code=model_params.trust_remote_code
)
model.tie_weights()
params["device_map"] = infer_auto_device_map(
model,
dtype=torch.int8,
max_memory=params["max_memory"].copy(),
no_split_module_classes=model._no_split_modules,
)
try:
if model_params.trust_remote_code:
params["trust_remote_code"] = True
logger.info(f"params: {params}")
model = LoaderClass.from_pretrained(model_params.model_path, **params)
except Exception as e:
logger.error(
f"Load quantization model failed, error: {str(e)}, params: {params}"
)
raise e
# Loading the tokenizer
if type(model) is LlamaForCausalLM:
logger.info(
f"Current model is type of: LlamaForCausalLM, load tokenizer by LlamaTokenizer"
)
tokenizer = LlamaTokenizer.from_pretrained(
model_params.model_path, clean_up_tokenization_spaces=True
)
# Leaving this here until the LLaMA tokenizer gets figured out.
# For some people this fixes things, for others it causes an error.
try:
tokenizer.eos_token_id = 2
tokenizer.bos_token_id = 1
tokenizer.pad_token_id = 0
except Exception as e:
logger.warn(f"{str(e)}")
else:
logger.info(
f"Current model type is not LlamaForCausalLM, load tokenizer by AutoTokenizer"
)
tokenizer = AutoTokenizer.from_pretrained(
model_params.model_path,
trust_remote_code=model_params.trust_remote_code,
use_fast=llm_adapter.use_fast_tokenizer(),
)
return model, tokenizer
def llamacpp_loader(
llm_adapter: LLMModelAdapter, model_params: LlamaCppModelParameters
):
try:
from dbgpt.model.llm.llama_cpp.llama_cpp import LlamaCppModel
except ImportError as exc:
raise ValueError(
"Could not import python package: llama-cpp-python "
"Please install db-gpt llama support with `cd $DB-GPT-DIR && pip install .[llama_cpp]` "
"or install llama-cpp-python with `pip install llama-cpp-python`"
) from exc
model_path = model_params.model_path
model, tokenizer = LlamaCppModel.from_pretrained(model_path, model_params)
return model, tokenizer
def proxyllm_loader(llm_adapter: LLMModelAdapter, model_params: ProxyModelParameters):
from dbgpt.model.proxy.llms.proxy_model import ProxyModel
logger.info("Load proxyllm")
model = ProxyModel(model_params)
return model, model