mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-25 13:06:53 +00:00
427 lines
15 KiB
Python
427 lines
15 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import logging
|
|
from typing import Any, Dict, Optional
|
|
|
|
from dbgpt.configs.model_config import get_device
|
|
from dbgpt.model.adapter.base import LLMModelAdapter
|
|
from dbgpt.model.adapter.model_adapter import get_llm_model_adapter
|
|
from dbgpt.model.base import ModelType
|
|
from dbgpt.model.parameter import (
|
|
LlamaCppModelParameters,
|
|
ModelParameters,
|
|
ProxyModelParameters,
|
|
)
|
|
from dbgpt.util import get_gpu_memory
|
|
from dbgpt.util.parameter_utils import EnvArgumentParser, _genenv_ignoring_key_case
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _check_multi_gpu_or_4bit_quantization(model_params: ModelParameters):
|
|
# TODO: vicuna-v1.5 8-bit quantization info is slow
|
|
# TODO: support wizardlm quantization, see: https://huggingface.co/WizardLM/WizardLM-13B-V1.2/discussions/5
|
|
# TODO: support internlm quantization
|
|
model_name = model_params.model_name.lower()
|
|
supported_models = ["llama", "baichuan", "vicuna"]
|
|
return any(m in model_name for m in supported_models)
|
|
|
|
|
|
def _check_quantization(model_params: ModelParameters):
|
|
model_name = model_params.model_name.lower()
|
|
has_quantization = any([model_params.load_8bit or model_params.load_4bit])
|
|
if has_quantization:
|
|
if model_params.device != "cuda":
|
|
logger.warn(
|
|
"8-bit quantization and 4-bit quantization just supported by cuda"
|
|
)
|
|
return False
|
|
elif "chatglm" in model_name:
|
|
if "int4" not in model_name:
|
|
logger.warn(
|
|
"chatglm or chatglm2 not support quantization now, see: https://github.com/huggingface/transformers/issues/25228"
|
|
)
|
|
return False
|
|
return has_quantization
|
|
|
|
|
|
def _get_model_real_path(model_name, default_model_path) -> str:
|
|
"""Get model real path by model name
|
|
priority from high to low:
|
|
1. environment variable with key: {model_name}_model_path
|
|
2. environment variable with key: model_path
|
|
3. default_model_path
|
|
"""
|
|
env_prefix = model_name + "_"
|
|
env_prefix = env_prefix.replace("-", "_")
|
|
env_model_path = _genenv_ignoring_key_case("model_path", env_prefix=env_prefix)
|
|
if env_model_path:
|
|
return env_model_path
|
|
return _genenv_ignoring_key_case("model_path", default_value=default_model_path)
|
|
|
|
|
|
class ModelLoader:
|
|
"""Model loader is a class for model load
|
|
|
|
Args: model_path
|
|
|
|
TODO: multi model support.
|
|
"""
|
|
|
|
def __init__(self, model_path: str, model_name: str = None) -> None:
|
|
self.device = get_device()
|
|
self.model_path = model_path
|
|
self.model_name = model_name
|
|
self.prompt_template: str = None
|
|
|
|
# TODO multi gpu support
|
|
def loader(
|
|
self,
|
|
load_8bit=False,
|
|
load_4bit=False,
|
|
debug=False,
|
|
cpu_offloading=False,
|
|
max_gpu_memory: Optional[str] = None,
|
|
):
|
|
llm_adapter = get_llm_model_adapter(self.model_name, self.model_path)
|
|
model_type = llm_adapter.model_type()
|
|
param_cls = llm_adapter.model_param_class(model_type)
|
|
|
|
args_parser = EnvArgumentParser()
|
|
# Read the parameters of the model from the environment variable according to the model name prefix, which currently has the highest priority
|
|
# vicuna_13b_max_gpu_memory=13Gib or VICUNA_13B_MAX_GPU_MEMORY=13Gib
|
|
env_prefix = self.model_name + "_"
|
|
env_prefix = env_prefix.replace("-", "_")
|
|
model_params = args_parser.parse_args_into_dataclass(
|
|
param_cls,
|
|
env_prefixes=[env_prefix],
|
|
device=self.device,
|
|
model_path=self.model_path,
|
|
model_name=self.model_name,
|
|
max_gpu_memory=max_gpu_memory,
|
|
cpu_offloading=cpu_offloading,
|
|
load_8bit=load_8bit,
|
|
load_4bit=load_4bit,
|
|
verbose=debug,
|
|
)
|
|
self.prompt_template = model_params.prompt_template
|
|
|
|
logger.info(f"model_params:\n{model_params}")
|
|
|
|
if model_type == ModelType.HF:
|
|
return huggingface_loader(llm_adapter, model_params)
|
|
elif model_type == ModelType.LLAMA_CPP:
|
|
return llamacpp_loader(llm_adapter, model_params)
|
|
else:
|
|
raise Exception(f"Unkown model type {model_type}")
|
|
|
|
def loader_with_params(
|
|
self, model_params: ModelParameters, llm_adapter: LLMModelAdapter
|
|
):
|
|
model_type = llm_adapter.model_type()
|
|
self.prompt_template = model_params.prompt_template
|
|
if model_type == ModelType.HF:
|
|
return huggingface_loader(llm_adapter, model_params)
|
|
elif model_type == ModelType.LLAMA_CPP:
|
|
return llamacpp_loader(llm_adapter, model_params)
|
|
elif model_type == ModelType.PROXY:
|
|
# return proxyllm_loader(llm_adapter, model_params)
|
|
return llm_adapter.load_from_params(model_params)
|
|
elif model_type == ModelType.VLLM:
|
|
return llm_adapter.load_from_params(model_params)
|
|
else:
|
|
raise Exception(f"Unkown model type {model_type}")
|
|
|
|
|
|
def huggingface_loader(llm_adapter: LLMModelAdapter, model_params: ModelParameters):
|
|
import torch
|
|
|
|
from dbgpt.model.llm.compression import compress_module
|
|
|
|
device = model_params.device
|
|
max_memory = None
|
|
|
|
# if device is cpu or mps. gpu need to be zero
|
|
num_gpus = 0
|
|
|
|
if device == "cpu":
|
|
kwargs = {"torch_dtype": torch.float32}
|
|
elif device == "cuda":
|
|
kwargs = {"torch_dtype": torch.float16}
|
|
num_gpus = torch.cuda.device_count()
|
|
available_gpu_memory = get_gpu_memory(num_gpus)
|
|
max_memory = {
|
|
i: str(int(available_gpu_memory[i] * 0.85)) + "GiB" for i in range(num_gpus)
|
|
}
|
|
if num_gpus != 1:
|
|
kwargs["device_map"] = "auto"
|
|
if model_params.max_gpu_memory:
|
|
logger.info(
|
|
f"There has max_gpu_memory from config: {model_params.max_gpu_memory}"
|
|
)
|
|
max_memory = {i: model_params.max_gpu_memory for i in range(num_gpus)}
|
|
kwargs["max_memory"] = max_memory
|
|
else:
|
|
kwargs["max_memory"] = max_memory
|
|
logger.debug(f"max_memory: {max_memory}")
|
|
|
|
elif device == "mps":
|
|
kwargs = {"torch_dtype": torch.float16}
|
|
|
|
import transformers
|
|
|
|
version = tuple(int(v) for v in transformers.__version__.split("."))
|
|
if version < (4, 35, 0):
|
|
from dbgpt.model.llm.monkey_patch import (
|
|
replace_llama_attn_with_non_inplace_operations,
|
|
)
|
|
|
|
# NOTE: Recent transformers library seems to fix the mps issue, also
|
|
# it has made some changes causing compatibility issues with our
|
|
# original patch. So we only apply the patch for older versions.
|
|
# Avoid bugs in mps backend by not using in-place operations.
|
|
replace_llama_attn_with_non_inplace_operations()
|
|
|
|
else:
|
|
raise ValueError(f"Invalid device: {device}")
|
|
|
|
model, tokenizer = _try_load_default_quantization_model(
|
|
llm_adapter, device, num_gpus, model_params, kwargs
|
|
)
|
|
if model:
|
|
return model, tokenizer
|
|
|
|
can_quantization = _check_quantization(model_params)
|
|
|
|
if can_quantization and (num_gpus > 1 or model_params.load_4bit):
|
|
if _check_multi_gpu_or_4bit_quantization(model_params):
|
|
return load_huggingface_quantization_model(
|
|
llm_adapter, model_params, kwargs, max_memory
|
|
)
|
|
else:
|
|
logger.warn(
|
|
f"Current model {model_params.model_name} not supported quantization"
|
|
)
|
|
# default loader
|
|
model, tokenizer = llm_adapter.load(model_params.model_path, kwargs)
|
|
|
|
if model_params.load_8bit and num_gpus == 1 and tokenizer:
|
|
# TODO merge current code into `load_huggingface_quantization_model`
|
|
compress_module(model, model_params.device)
|
|
|
|
return _handle_model_and_tokenizer(model, tokenizer, device, num_gpus, model_params)
|
|
|
|
|
|
def _try_load_default_quantization_model(
|
|
llm_adapter: LLMModelAdapter,
|
|
device: str,
|
|
num_gpus: int,
|
|
model_params: ModelParameters,
|
|
kwargs: Dict[str, Any],
|
|
):
|
|
"""Try load default quantization model(Support by huggingface default)"""
|
|
cloned_kwargs = {k: v for k, v in kwargs.items()}
|
|
try:
|
|
model, tokenizer = None, None
|
|
if device != "cuda":
|
|
return None, None
|
|
elif model_params.load_8bit and llm_adapter.support_8bit:
|
|
cloned_kwargs["load_in_8bit"] = True
|
|
model, tokenizer = llm_adapter.load(model_params.model_path, cloned_kwargs)
|
|
elif model_params.load_4bit and llm_adapter.support_4bit:
|
|
cloned_kwargs["load_in_4bit"] = True
|
|
model, tokenizer = llm_adapter.load(model_params.model_path, cloned_kwargs)
|
|
if model:
|
|
logger.info(
|
|
f"Load default quantization model {model_params.model_name} success"
|
|
)
|
|
return _handle_model_and_tokenizer(
|
|
model, tokenizer, device, num_gpus, model_params
|
|
)
|
|
return None, None
|
|
except Exception as e:
|
|
logger.warning(
|
|
f"Load default quantization model {model_params.model_name} failed, error: {str(e)}"
|
|
)
|
|
return None, None
|
|
|
|
|
|
def _handle_model_and_tokenizer(
|
|
model, tokenizer, device: str, num_gpus: int, model_params: ModelParameters
|
|
):
|
|
if (
|
|
(device == "cuda" and num_gpus == 1 and not model_params.cpu_offloading)
|
|
or device == "mps"
|
|
and tokenizer
|
|
):
|
|
try:
|
|
model.to(device)
|
|
except ValueError:
|
|
pass
|
|
except AttributeError:
|
|
pass
|
|
if model_params.verbose:
|
|
print(model)
|
|
return model, tokenizer
|
|
|
|
|
|
def load_huggingface_quantization_model(
|
|
llm_adapter: LLMModelAdapter,
|
|
model_params: ModelParameters,
|
|
kwargs: Dict,
|
|
max_memory: Dict[int, str],
|
|
):
|
|
import torch
|
|
|
|
try:
|
|
import transformers
|
|
from accelerate import init_empty_weights
|
|
from accelerate.utils import infer_auto_device_map
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoModel,
|
|
AutoModelForCausalLM,
|
|
AutoModelForSeq2SeqLM,
|
|
AutoTokenizer,
|
|
BitsAndBytesConfig,
|
|
LlamaForCausalLM,
|
|
LlamaTokenizer,
|
|
)
|
|
except ImportError as exc:
|
|
raise ValueError(
|
|
"Could not import depend python package "
|
|
"Please install it with `pip install transformers` "
|
|
"`pip install bitsandbytes``pip install accelerate`."
|
|
) from exc
|
|
if (
|
|
"llama-2" in model_params.model_name.lower()
|
|
and not transformers.__version__ >= "4.31.0"
|
|
):
|
|
raise ValueError(
|
|
"Llama-2 quantization require transformers.__version__>=4.31.0"
|
|
)
|
|
params = {"low_cpu_mem_usage": True}
|
|
params["low_cpu_mem_usage"] = True
|
|
params["device_map"] = "auto"
|
|
|
|
torch_dtype = kwargs.get("torch_dtype")
|
|
|
|
if model_params.load_4bit:
|
|
compute_dtype = None
|
|
if model_params.compute_dtype and model_params.compute_dtype in [
|
|
"bfloat16",
|
|
"float16",
|
|
"float32",
|
|
]:
|
|
compute_dtype = eval("torch.{}".format(model_params.compute_dtype))
|
|
|
|
quantization_config_params = {
|
|
"load_in_4bit": True,
|
|
"bnb_4bit_compute_dtype": compute_dtype,
|
|
"bnb_4bit_quant_type": model_params.quant_type,
|
|
"bnb_4bit_use_double_quant": model_params.use_double_quant,
|
|
}
|
|
logger.warn(
|
|
"Using the following 4-bit params: " + str(quantization_config_params)
|
|
)
|
|
params["quantization_config"] = BitsAndBytesConfig(**quantization_config_params)
|
|
elif model_params.load_8bit and max_memory:
|
|
params["quantization_config"] = BitsAndBytesConfig(
|
|
load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True
|
|
)
|
|
elif model_params.load_in_8bit:
|
|
params["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
|
|
params["torch_dtype"] = torch_dtype if torch_dtype else torch.float16
|
|
params["max_memory"] = max_memory
|
|
|
|
if "chatglm" in model_params.model_name.lower():
|
|
LoaderClass = AutoModel
|
|
else:
|
|
config = AutoConfig.from_pretrained(
|
|
model_params.model_path, trust_remote_code=model_params.trust_remote_code
|
|
)
|
|
if config.to_dict().get("is_encoder_decoder", False):
|
|
LoaderClass = AutoModelForSeq2SeqLM
|
|
else:
|
|
LoaderClass = AutoModelForCausalLM
|
|
|
|
if model_params.load_8bit and max_memory is not None:
|
|
config = AutoConfig.from_pretrained(
|
|
model_params.model_path, trust_remote_code=model_params.trust_remote_code
|
|
)
|
|
with init_empty_weights():
|
|
model = LoaderClass.from_config(
|
|
config, trust_remote_code=model_params.trust_remote_code
|
|
)
|
|
|
|
model.tie_weights()
|
|
params["device_map"] = infer_auto_device_map(
|
|
model,
|
|
dtype=torch.int8,
|
|
max_memory=params["max_memory"].copy(),
|
|
no_split_module_classes=model._no_split_modules,
|
|
)
|
|
try:
|
|
if model_params.trust_remote_code:
|
|
params["trust_remote_code"] = True
|
|
logger.info(f"params: {params}")
|
|
model = LoaderClass.from_pretrained(model_params.model_path, **params)
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Load quantization model failed, error: {str(e)}, params: {params}"
|
|
)
|
|
raise e
|
|
|
|
# Loading the tokenizer
|
|
if type(model) is LlamaForCausalLM:
|
|
logger.info(
|
|
f"Current model is type of: LlamaForCausalLM, load tokenizer by LlamaTokenizer"
|
|
)
|
|
tokenizer = LlamaTokenizer.from_pretrained(
|
|
model_params.model_path, clean_up_tokenization_spaces=True
|
|
)
|
|
# Leaving this here until the LLaMA tokenizer gets figured out.
|
|
# For some people this fixes things, for others it causes an error.
|
|
try:
|
|
tokenizer.eos_token_id = 2
|
|
tokenizer.bos_token_id = 1
|
|
tokenizer.pad_token_id = 0
|
|
except Exception as e:
|
|
logger.warn(f"{str(e)}")
|
|
else:
|
|
logger.info(
|
|
f"Current model type is not LlamaForCausalLM, load tokenizer by AutoTokenizer"
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_params.model_path,
|
|
trust_remote_code=model_params.trust_remote_code,
|
|
use_fast=llm_adapter.use_fast_tokenizer(),
|
|
)
|
|
|
|
return model, tokenizer
|
|
|
|
|
|
def llamacpp_loader(
|
|
llm_adapter: LLMModelAdapter, model_params: LlamaCppModelParameters
|
|
):
|
|
try:
|
|
from dbgpt.model.llm.llama_cpp.llama_cpp import LlamaCppModel
|
|
except ImportError as exc:
|
|
raise ValueError(
|
|
"Could not import python package: llama-cpp-python "
|
|
"Please install db-gpt llama support with `cd $DB-GPT-DIR && pip install .[llama_cpp]` "
|
|
"or install llama-cpp-python with `pip install llama-cpp-python`"
|
|
) from exc
|
|
model_path = model_params.model_path
|
|
model, tokenizer = LlamaCppModel.from_pretrained(model_path, model_params)
|
|
return model, tokenizer
|
|
|
|
|
|
def proxyllm_loader(llm_adapter: LLMModelAdapter, model_params: ProxyModelParameters):
|
|
from dbgpt.model.proxy.llms.proxy_model import ProxyModel
|
|
|
|
logger.info("Load proxyllm")
|
|
model = ProxyModel(model_params)
|
|
return model, model
|