mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-26 05:23:37 +00:00
161 lines
5.4 KiB
Python
161 lines
5.4 KiB
Python
from __future__ import annotations
|
|
|
|
import logging
|
|
import os
|
|
import threading
|
|
from functools import cache
|
|
from typing import List, Optional, Type
|
|
|
|
from dbgpt.model.adapter.base import LLMModelAdapter, get_model_adapter
|
|
from dbgpt.model.adapter.template import ConversationAdapter, ConversationAdapterFactory
|
|
from dbgpt.model.base import ModelType
|
|
from dbgpt.model.parameter import BaseModelParameters
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
thread_local = threading.local()
|
|
_IS_BENCHMARK = os.getenv("DB_GPT_MODEL_BENCHMARK", "False").lower() == "true"
|
|
|
|
|
|
_OLD_MODELS = [
|
|
"llama-cpp",
|
|
# "proxyllm",
|
|
"gptj-6b",
|
|
"codellama-13b-sql-sft",
|
|
"codellama-7b",
|
|
"codellama-7b-sql-sft",
|
|
"codellama-13b",
|
|
]
|
|
|
|
|
|
@cache
|
|
def get_llm_model_adapter(
|
|
model_name: str,
|
|
model_path: str,
|
|
use_fastchat: bool = True,
|
|
use_fastchat_monkey_patch: bool = False,
|
|
model_type: str = None,
|
|
) -> LLMModelAdapter:
|
|
conv_factory = DefaultConversationAdapterFactory()
|
|
if model_type == ModelType.VLLM:
|
|
logger.info("Current model type is vllm, return VLLMModelAdapterWrapper")
|
|
from dbgpt.model.adapter.vllm_adapter import VLLMModelAdapterWrapper
|
|
|
|
return VLLMModelAdapterWrapper(conv_factory)
|
|
|
|
# Import NewHFChatModelAdapter for it can be registered
|
|
from dbgpt.model.adapter.hf_adapter import NewHFChatModelAdapter
|
|
from dbgpt.model.adapter.proxy_adapter import ProxyLLMModelAdapter
|
|
|
|
new_model_adapter = get_model_adapter(
|
|
model_type, model_name, model_path, conv_factory
|
|
)
|
|
if new_model_adapter:
|
|
logger.info(f"Current model {model_name} use new adapter {new_model_adapter}")
|
|
return new_model_adapter
|
|
|
|
must_use_old = any(m in model_name for m in _OLD_MODELS)
|
|
result_adapter: Optional[LLMModelAdapter] = None
|
|
if use_fastchat and not must_use_old:
|
|
logger.info("Use fastcat adapter")
|
|
from dbgpt.model.adapter.fschat_adapter import (
|
|
FastChatLLMModelAdapterWrapper,
|
|
_fastchat_get_adapter_monkey_patch,
|
|
_get_fastchat_model_adapter,
|
|
)
|
|
|
|
adapter = _get_fastchat_model_adapter(
|
|
model_name,
|
|
model_path,
|
|
_fastchat_get_adapter_monkey_patch,
|
|
use_fastchat_monkey_patch=use_fastchat_monkey_patch,
|
|
)
|
|
if adapter:
|
|
result_adapter = FastChatLLMModelAdapterWrapper(adapter)
|
|
|
|
else:
|
|
from dbgpt.app.chat_adapter import get_llm_chat_adapter
|
|
from dbgpt.model.adapter.old_adapter import OldLLMModelAdapterWrapper
|
|
from dbgpt.model.adapter.old_adapter import (
|
|
get_llm_model_adapter as _old_get_llm_model_adapter,
|
|
)
|
|
|
|
logger.info("Use DB-GPT old adapter")
|
|
result_adapter = OldLLMModelAdapterWrapper(
|
|
_old_get_llm_model_adapter(model_name, model_path),
|
|
get_llm_chat_adapter(model_name, model_path),
|
|
)
|
|
if result_adapter:
|
|
result_adapter.model_name = model_name
|
|
result_adapter.model_path = model_path
|
|
result_adapter.conv_factory = conv_factory
|
|
return result_adapter
|
|
else:
|
|
raise ValueError(f"Can not find adapter for model {model_name}")
|
|
|
|
|
|
@cache
|
|
def _auto_get_conv_template(
|
|
model_name: str, model_path: str
|
|
) -> Optional[ConversationAdapter]:
|
|
"""Auto get the conversation template.
|
|
|
|
Args:
|
|
model_name (str): The name of the model.
|
|
model_path (str): The path of the model.
|
|
|
|
Returns:
|
|
Optional[ConversationAdapter]: The conversation template.
|
|
"""
|
|
try:
|
|
adapter = get_llm_model_adapter(model_name, model_path, use_fastchat=True)
|
|
return adapter.get_default_conv_template(model_name, model_path)
|
|
except Exception as e:
|
|
logger.debug(f"Failed to get conv template for {model_name} {model_path}: {e}")
|
|
return None
|
|
|
|
|
|
class DefaultConversationAdapterFactory(ConversationAdapterFactory):
|
|
def get_by_model(self, model_name: str, model_path: str) -> ConversationAdapter:
|
|
"""Get a conversation adapter by model.
|
|
|
|
Args:
|
|
model_name (str): The name of the model.
|
|
model_path (str): The path of the model.
|
|
Returns:
|
|
ConversationAdapter: The conversation adapter.
|
|
"""
|
|
return _auto_get_conv_template(model_name, model_path)
|
|
|
|
|
|
def _dynamic_model_parser() -> Optional[List[Type[BaseModelParameters]]]:
|
|
"""Dynamic model parser, parse the model parameters from the command line arguments.
|
|
|
|
Returns:
|
|
Optional[List[Type[BaseModelParameters]]]: The model parameters class list.
|
|
"""
|
|
from dbgpt.model.parameter import (
|
|
EMBEDDING_NAME_TO_PARAMETER_CLASS_CONFIG,
|
|
EmbeddingModelParameters,
|
|
WorkerType,
|
|
)
|
|
from dbgpt.util.parameter_utils import _SimpleArgParser
|
|
|
|
pre_args = _SimpleArgParser("model_name", "model_path", "worker_type", "model_type")
|
|
pre_args.parse()
|
|
model_name = pre_args.get("model_name")
|
|
model_path = pre_args.get("model_path")
|
|
worker_type = pre_args.get("worker_type")
|
|
model_type = pre_args.get("model_type")
|
|
if worker_type == WorkerType.TEXT2VEC:
|
|
return [
|
|
EMBEDDING_NAME_TO_PARAMETER_CLASS_CONFIG.get(
|
|
model_name, EmbeddingModelParameters
|
|
)
|
|
]
|
|
if model_name is None and model_type != ModelType.VLLM:
|
|
return None
|
|
llm_adapter = get_llm_model_adapter(model_name, model_path, model_type=model_type)
|
|
param_class = llm_adapter.model_param_class()
|
|
return [param_class]
|