DB-GPT/dbgpt/model/adapter/model_adapter.py
2024-05-16 14:50:16 +08:00

161 lines
5.4 KiB
Python

from __future__ import annotations
import logging
import os
import threading
from functools import cache
from typing import List, Optional, Type
from dbgpt.model.adapter.base import LLMModelAdapter, get_model_adapter
from dbgpt.model.adapter.template import ConversationAdapter, ConversationAdapterFactory
from dbgpt.model.base import ModelType
from dbgpt.model.parameter import BaseModelParameters
logger = logging.getLogger(__name__)
thread_local = threading.local()
_IS_BENCHMARK = os.getenv("DB_GPT_MODEL_BENCHMARK", "False").lower() == "true"
_OLD_MODELS = [
"llama-cpp",
# "proxyllm",
"gptj-6b",
"codellama-13b-sql-sft",
"codellama-7b",
"codellama-7b-sql-sft",
"codellama-13b",
]
@cache
def get_llm_model_adapter(
model_name: str,
model_path: str,
use_fastchat: bool = True,
use_fastchat_monkey_patch: bool = False,
model_type: str = None,
) -> LLMModelAdapter:
conv_factory = DefaultConversationAdapterFactory()
if model_type == ModelType.VLLM:
logger.info("Current model type is vllm, return VLLMModelAdapterWrapper")
from dbgpt.model.adapter.vllm_adapter import VLLMModelAdapterWrapper
return VLLMModelAdapterWrapper(conv_factory)
# Import NewHFChatModelAdapter for it can be registered
from dbgpt.model.adapter.hf_adapter import NewHFChatModelAdapter
from dbgpt.model.adapter.proxy_adapter import ProxyLLMModelAdapter
new_model_adapter = get_model_adapter(
model_type, model_name, model_path, conv_factory
)
if new_model_adapter:
logger.info(f"Current model {model_name} use new adapter {new_model_adapter}")
return new_model_adapter
must_use_old = any(m in model_name for m in _OLD_MODELS)
result_adapter: Optional[LLMModelAdapter] = None
if use_fastchat and not must_use_old:
logger.info("Use fastcat adapter")
from dbgpt.model.adapter.fschat_adapter import (
FastChatLLMModelAdapterWrapper,
_fastchat_get_adapter_monkey_patch,
_get_fastchat_model_adapter,
)
adapter = _get_fastchat_model_adapter(
model_name,
model_path,
_fastchat_get_adapter_monkey_patch,
use_fastchat_monkey_patch=use_fastchat_monkey_patch,
)
if adapter:
result_adapter = FastChatLLMModelAdapterWrapper(adapter)
else:
from dbgpt.app.chat_adapter import get_llm_chat_adapter
from dbgpt.model.adapter.old_adapter import OldLLMModelAdapterWrapper
from dbgpt.model.adapter.old_adapter import (
get_llm_model_adapter as _old_get_llm_model_adapter,
)
logger.info("Use DB-GPT old adapter")
result_adapter = OldLLMModelAdapterWrapper(
_old_get_llm_model_adapter(model_name, model_path),
get_llm_chat_adapter(model_name, model_path),
)
if result_adapter:
result_adapter.model_name = model_name
result_adapter.model_path = model_path
result_adapter.conv_factory = conv_factory
return result_adapter
else:
raise ValueError(f"Can not find adapter for model {model_name}")
@cache
def _auto_get_conv_template(
model_name: str, model_path: str
) -> Optional[ConversationAdapter]:
"""Auto get the conversation template.
Args:
model_name (str): The name of the model.
model_path (str): The path of the model.
Returns:
Optional[ConversationAdapter]: The conversation template.
"""
try:
adapter = get_llm_model_adapter(model_name, model_path, use_fastchat=True)
return adapter.get_default_conv_template(model_name, model_path)
except Exception as e:
logger.debug(f"Failed to get conv template for {model_name} {model_path}: {e}")
return None
class DefaultConversationAdapterFactory(ConversationAdapterFactory):
def get_by_model(self, model_name: str, model_path: str) -> ConversationAdapter:
"""Get a conversation adapter by model.
Args:
model_name (str): The name of the model.
model_path (str): The path of the model.
Returns:
ConversationAdapter: The conversation adapter.
"""
return _auto_get_conv_template(model_name, model_path)
def _dynamic_model_parser() -> Optional[List[Type[BaseModelParameters]]]:
"""Dynamic model parser, parse the model parameters from the command line arguments.
Returns:
Optional[List[Type[BaseModelParameters]]]: The model parameters class list.
"""
from dbgpt.model.parameter import (
EMBEDDING_NAME_TO_PARAMETER_CLASS_CONFIG,
EmbeddingModelParameters,
WorkerType,
)
from dbgpt.util.parameter_utils import _SimpleArgParser
pre_args = _SimpleArgParser("model_name", "model_path", "worker_type", "model_type")
pre_args.parse()
model_name = pre_args.get("model_name")
model_path = pre_args.get("model_path")
worker_type = pre_args.get("worker_type")
model_type = pre_args.get("model_type")
if worker_type == WorkerType.TEXT2VEC:
return [
EMBEDDING_NAME_TO_PARAMETER_CLASS_CONFIG.get(
model_name, EmbeddingModelParameters
)
]
if model_name is None and model_type != ModelType.VLLM:
return None
llm_adapter = get_llm_model_adapter(model_name, model_path, model_type=model_type)
param_class = llm_adapter.model_param_class()
return [param_class]