DB-GPT/dbgpt/model/adapter/old_adapter.py
2024-04-09 21:01:32 +08:00

518 lines
17 KiB
Python

"""
This code file will be deprecated in the future.
We have integrated fastchat. For details, see: dbgpt/model/model_adapter.py
"""
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import logging
import os
import re
from functools import cache
from pathlib import Path
from typing import TYPE_CHECKING, List, Optional, Tuple
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer
from dbgpt._private.config import Config
from dbgpt.configs.model_config import get_device
from dbgpt.model.adapter.base import LLMModelAdapter
from dbgpt.model.adapter.template import ConversationAdapter, PromptType
from dbgpt.model.base import ModelType
from dbgpt.model.llm.conversation import Conversation
from dbgpt.model.parameter import (
LlamaCppModelParameters,
ModelParameters,
ProxyModelParameters,
)
if TYPE_CHECKING:
from dbgpt.app.chat_adapter import BaseChatAdpter
logger = logging.getLogger(__name__)
CFG = Config()
class BaseLLMAdaper:
"""The Base class for multi model, in our project.
We will support those model, which performance resemble ChatGPT"""
def use_fast_tokenizer(self) -> bool:
return False
def model_type(self) -> str:
return ModelType.HF
def model_param_class(self, model_type: str = None) -> ModelParameters:
model_type = model_type if model_type else self.model_type()
if model_type == ModelType.LLAMA_CPP:
return LlamaCppModelParameters
elif model_type == ModelType.PROXY:
return ProxyModelParameters
return ModelParameters
def match(self, model_path: str):
return False
def loader(self, model_path: str, from_pretrained_kwargs: dict):
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **from_pretrained_kwargs
)
return model, tokenizer
llm_model_adapters: List[BaseLLMAdaper] = []
# Register llm models to adapters, by this we can use multi models.
def register_llm_model_adapters(cls):
"""Register a llm model adapter."""
llm_model_adapters.append(cls())
@cache
def get_llm_model_adapter(model_name: str, model_path: str) -> BaseLLMAdaper:
# Prefer using model name matching
for adapter in llm_model_adapters:
if adapter.match(model_name):
logger.info(
f"Found llm model adapter with model name: {model_name}, {adapter}"
)
return adapter
for adapter in llm_model_adapters:
if model_path and adapter.match(model_path):
logger.info(
f"Found llm model adapter with model path: {model_path}, {adapter}"
)
return adapter
raise ValueError(
f"Invalid model adapter for model name {model_name} and model path {model_path}"
)
# TODO support cpu? for practise we support gpt4all or chatglm-6b-int4?
class VicunaLLMAdapater(BaseLLMAdaper):
"""Vicuna Adapter"""
def match(self, model_path: str):
return "vicuna" in model_path
def loader(self, model_path: str, from_pretrained_kwagrs: dict):
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **from_pretrained_kwagrs
)
return model, tokenizer
def auto_configure_device_map(num_gpus):
"""handling multi gpu calls"""
# transformer.word_embeddings occupying 1 floors
# transformer.final_layernorm and lm_head occupying 1 floors
# transformer.layers occupying 28 floors
# Allocate a total of 30 layers to number On gpus cards
num_trans_layers = 28
per_gpu_layers = 30 / num_gpus
# Bugfix: call torch.embedding in Linux and the incoming weight and input are not on the same device, resulting in a RuntimeError
# Under Windows, model. device will be set to transformer. word_ Embeddings. device
# Under Linux, model. device will be set to lm_ Head.device
# When calling chat or stream_ During chat, input_ IDS will be placed on model. device
# If transformer. word_ If embeddings. device and model. device are different, it will cause a RuntimeError
# Therefore, here we will transform. word_ Embeddings, transformer. final_ Layernorm, lm_ Put all the heads on the first card
device_map = {
"transformer.embedding.word_embeddings": 0,
"transformer.encoder.final_layernorm": 0,
"transformer.output_layer": 0,
"transformer.rotary_pos_emb": 0,
"lm_head": 0,
}
used = 2
gpu_target = 0
for i in range(num_trans_layers):
if used >= per_gpu_layers:
gpu_target += 1
used = 0
assert gpu_target < num_gpus
device_map[f"transformer.encoder.layers.{i}"] = gpu_target
used += 1
return device_map
class ChatGLMAdapater(BaseLLMAdaper):
"""LLM Adatpter for THUDM/chatglm-6b"""
def match(self, model_path: str):
return "chatglm" in model_path
def loader(self, model_path: str, from_pretrained_kwargs: dict):
import torch
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
if get_device() != "cuda":
model = AutoModel.from_pretrained(
model_path, trust_remote_code=True, **from_pretrained_kwargs
).float()
return model, tokenizer
else:
device_map = None
num_gpus = torch.cuda.device_count()
model = (
AutoModel.from_pretrained(
model_path, trust_remote_code=True, **from_pretrained_kwargs
).half()
# .cuda()
)
from accelerate import dispatch_model
if device_map is None:
device_map = auto_configure_device_map(num_gpus)
model = dispatch_model(model, device_map=device_map)
return model, tokenizer
class GuanacoAdapter(BaseLLMAdaper):
"""TODO Support guanaco"""
def match(self, model_path: str):
return "guanaco" in model_path
def loader(self, model_path: str, from_pretrained_kwargs: dict):
tokenizer = LlamaTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path, load_in_4bit=True, **from_pretrained_kwargs
)
return model, tokenizer
class FalconAdapater(BaseLLMAdaper):
"""falcon Adapter"""
def match(self, model_path: str):
return "falcon" in model_path
def loader(self, model_path: str, from_pretrained_kwagrs: dict):
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
if CFG.QLoRA:
from transformers import BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype="bfloat16",
bnb_4bit_use_double_quant=False,
)
model = AutoModelForCausalLM.from_pretrained(
model_path,
load_in_4bit=True, # quantize
quantization_config=bnb_config,
trust_remote_code=True,
**from_pretrained_kwagrs,
)
else:
model = AutoModelForCausalLM.from_pretrained(
model_path,
trust_remote_code=True,
**from_pretrained_kwagrs,
)
return model, tokenizer
class GorillaAdapter(BaseLLMAdaper):
"""TODO Support guanaco"""
def match(self, model_path: str):
return "gorilla" in model_path
def loader(self, model_path: str, from_pretrained_kwargs: dict):
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **from_pretrained_kwargs
)
return model, tokenizer
class StarCoderAdapter(BaseLLMAdaper):
pass
class KoalaLLMAdapter(BaseLLMAdaper):
"""Koala LLM Adapter which Based LLaMA"""
def match(self, model_path: str):
return "koala" in model_path
class RWKV4LLMAdapter(BaseLLMAdaper):
"""LLM Adapter for RwKv4"""
def match(self, model_path: str):
return "RWKV-4" in model_path
def loader(self, model_path: str, from_pretrained_kwargs: dict):
# TODO
pass
class GPT4AllAdapter(BaseLLMAdaper):
"""
A light version for someone who want practise LLM use laptop.
All model names see: https://gpt4all.io/models/models.json
"""
def match(self, model_path: str):
return "gptj-6b" in model_path
def loader(self, model_path: str, from_pretrained_kwargs: dict):
import gpt4all
if model_path is None and from_pretrained_kwargs.get("model_name") is None:
model = gpt4all.GPT4All("ggml-gpt4all-j-v1.3-groovy")
else:
path, file = os.path.split(model_path)
model = gpt4all.GPT4All(model_path=path, model_name=file)
return model, None
class ProxyllmAdapter(BaseLLMAdaper):
"""The model adapter for local proxy"""
def model_type(self) -> str:
return ModelType.PROXY
def match(self, model_path: str):
return "proxyllm" in model_path
def loader(self, model_path: str, from_pretrained_kwargs: dict):
return "proxyllm", None
class Llama2Adapter(BaseLLMAdaper):
"""The model adapter for llama-2"""
def match(self, model_path: str):
return "llama-2" in model_path.lower()
def loader(self, model_path: str, from_pretrained_kwargs: dict):
model, tokenizer = super().loader(model_path, from_pretrained_kwargs)
model.config.eos_token_id = tokenizer.eos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
return model, tokenizer
class CodeLlamaAdapter(BaseLLMAdaper):
"""The model adapter for codellama"""
def match(self, model_path: str):
return "codellama" in model_path.lower()
def loader(self, model_path: str, from_pretrained_kwargs: dict):
model, tokenizer = super().loader(model_path, from_pretrained_kwargs)
model.config.eos_token_id = tokenizer.eos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
return model, tokenizer
class BaichuanAdapter(BaseLLMAdaper):
"""The model adapter for Baichuan models (e.g., baichuan-inc/Baichuan-13B-Chat)"""
def match(self, model_path: str):
return "baichuan" in model_path.lower()
def loader(self, model_path: str, from_pretrained_kwargs: dict):
tokenizer = AutoTokenizer.from_pretrained(
model_path, trust_remote_code=True, use_fast=False
)
model = AutoModelForCausalLM.from_pretrained(
model_path,
trust_remote_code=True,
low_cpu_mem_usage=True,
**from_pretrained_kwargs,
)
return model, tokenizer
class WizardLMAdapter(BaseLLMAdaper):
def match(self, model_path: str):
return "wizardlm" in model_path.lower()
class LlamaCppAdapater(BaseLLMAdaper):
@staticmethod
def _parse_model_path(model_path: str) -> Tuple[bool, str]:
path = Path(model_path)
if not path.exists():
# Just support local model
return False, None
if not path.is_file():
model_paths = list(path.glob("*ggml*.gguf"))
if not model_paths:
return False, None
model_path = str(model_paths[0])
logger.warn(
f"Model path {model_path} is not single file, use first *gglm*.gguf model file: {model_path}"
)
if not re.fullmatch(r".*ggml.*\.gguf", model_path):
return False, None
return True, model_path
def model_type(self) -> ModelType:
return ModelType.LLAMA_CPP
def match(self, model_path: str):
"""
https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML
"""
if "llama-cpp" == model_path:
return True
is_match, _ = LlamaCppAdapater._parse_model_path(model_path)
return is_match
def loader(self, model_path: str, from_pretrained_kwargs: dict):
# TODO not support yet
_, model_path = LlamaCppAdapater._parse_model_path(model_path)
tokenizer = AutoTokenizer.from_pretrained(
model_path, trust_remote_code=True, use_fast=False
)
model = AutoModelForCausalLM.from_pretrained(
model_path,
trust_remote_code=True,
low_cpu_mem_usage=True,
**from_pretrained_kwargs,
)
return model, tokenizer
class InternLMAdapter(BaseLLMAdaper):
"""The model adapter for internlm/internlm-chat-7b"""
def match(self, model_path: str):
return "internlm" in model_path.lower()
def loader(self, model_path: str, from_pretrained_kwargs: dict):
revision = from_pretrained_kwargs.get("revision", "main")
model = AutoModelForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
trust_remote_code=True,
**from_pretrained_kwargs,
)
model = model.eval()
if "8k" in model_path.lower():
model.config.max_sequence_length = 8192
tokenizer = AutoTokenizer.from_pretrained(
model_path, use_fast=False, trust_remote_code=True, revision=revision
)
return model, tokenizer
class OldLLMModelAdapterWrapper(LLMModelAdapter):
"""Wrapping old adapter, which may be removed later"""
def __init__(self, adapter: BaseLLMAdaper, chat_adapter: "BaseChatAdpter") -> None:
self._adapter = adapter
self._chat_adapter = chat_adapter
def new_adapter(self, **kwargs) -> "LLMModelAdapter":
return OldLLMModelAdapterWrapper(self._adapter, self._chat_adapter)
def use_fast_tokenizer(self) -> bool:
return self._adapter.use_fast_tokenizer()
def model_type(self) -> str:
return self._adapter.model_type()
def model_param_class(self, model_type: str = None) -> ModelParameters:
return self._adapter.model_param_class(model_type)
def get_default_conv_template(
self, model_name: str, model_path: str
) -> Optional[ConversationAdapter]:
conv_template = self._chat_adapter.get_conv_template(model_path)
return OldConversationAdapter(conv_template) if conv_template else None
def load(self, model_path: str, from_pretrained_kwargs: dict):
return self._adapter.loader(model_path, from_pretrained_kwargs)
def get_generate_stream_function(self, model, model_path: str):
return self._chat_adapter.get_generate_stream_func(model_path)
def __str__(self) -> str:
return "{}({}.{})".format(
self.__class__.__name__,
self._adapter.__class__.__module__,
self._adapter.__class__.__name__,
)
class OldConversationAdapter(ConversationAdapter):
"""Wrapping old Conversation, which may be removed later"""
def __init__(self, conv: Conversation) -> None:
self._conv = conv
@property
def prompt_type(self) -> PromptType:
return PromptType.DBGPT
@property
def roles(self) -> Tuple[str]:
return self._conv.roles
@property
def sep(self) -> Optional[str]:
return self._conv.sep
@property
def stop_str(self) -> str:
return self._conv.stop_str
@property
def stop_token_ids(self) -> Optional[List[int]]:
return self._conv.stop_token_ids
def get_prompt(self) -> str:
return self._conv.get_prompt()
def set_system_message(self, system_message: str) -> None:
self._conv.update_system_message(system_message)
def append_message(self, role: str, message: str) -> None:
self._conv.append_message(role, message)
def update_last_message(self, message: str) -> None:
self._conv.update_last_message(message)
def copy(self) -> "ConversationAdapter":
return OldConversationAdapter(self._conv.copy())
register_llm_model_adapters(VicunaLLMAdapater)
register_llm_model_adapters(ChatGLMAdapater)
register_llm_model_adapters(GuanacoAdapter)
register_llm_model_adapters(FalconAdapater)
register_llm_model_adapters(GorillaAdapter)
register_llm_model_adapters(GPT4AllAdapter)
register_llm_model_adapters(Llama2Adapter)
register_llm_model_adapters(CodeLlamaAdapter)
register_llm_model_adapters(BaichuanAdapter)
register_llm_model_adapters(WizardLMAdapter)
register_llm_model_adapters(LlamaCppAdapater)
register_llm_model_adapters(InternLMAdapter)
# TODO Default support vicuna, other model need to tests and Evaluate
# just for test_py, remove this later
register_llm_model_adapters(ProxyllmAdapter)
register_llm_model_adapters(BaseLLMAdaper)