mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-26 21:37:40 +00:00
124 lines
3.1 KiB
Python
124 lines
3.1 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
from dataclasses import asdict, dataclass
|
|
from datetime import datetime
|
|
from enum import Enum
|
|
from typing import Dict, List, Optional
|
|
|
|
from dbgpt.util.parameter_utils import ParameterDescription
|
|
|
|
|
|
class ModelType:
|
|
""" "Type of model"""
|
|
|
|
HF = "huggingface"
|
|
LLAMA_CPP = "llama.cpp"
|
|
PROXY = "proxy"
|
|
VLLM = "vllm"
|
|
# TODO, support more model type
|
|
|
|
|
|
@dataclass
|
|
class ModelInstance:
|
|
"""Model instance info"""
|
|
|
|
model_name: str
|
|
host: str
|
|
port: int
|
|
weight: Optional[float] = 1.0
|
|
check_healthy: Optional[bool] = True
|
|
healthy: Optional[bool] = False
|
|
enabled: Optional[bool] = True
|
|
prompt_template: Optional[str] = None
|
|
last_heartbeat: Optional[datetime] = None
|
|
|
|
def to_dict(self) -> Dict:
|
|
"""Convert to dict"""
|
|
return asdict(self)
|
|
|
|
|
|
class WorkerApplyType(str, Enum):
|
|
START = "start"
|
|
STOP = "stop"
|
|
RESTART = "restart"
|
|
UPDATE_PARAMS = "update_params"
|
|
|
|
|
|
@dataclass
|
|
class WorkerApplyOutput:
|
|
message: str
|
|
success: Optional[bool] = True
|
|
# The seconds cost to apply some action to worker instances
|
|
timecost: Optional[int] = -1
|
|
|
|
@staticmethod
|
|
def reduce(outs: List["WorkerApplyOutput"]) -> "WorkerApplyOutput":
|
|
"""Merge all outputs
|
|
|
|
Args:
|
|
outs (List["WorkerApplyOutput"]): The list of WorkerApplyOutput
|
|
"""
|
|
if not outs:
|
|
return WorkerApplyOutput("Not outputs")
|
|
combined_success = all(out.success for out in outs)
|
|
max_timecost = max(out.timecost for out in outs)
|
|
combined_message = "\n;".join(out.message for out in outs)
|
|
return WorkerApplyOutput(combined_message, combined_success, max_timecost)
|
|
|
|
|
|
@dataclass
|
|
class SupportedModel:
|
|
model: str
|
|
path: str
|
|
worker_type: str
|
|
path_exist: bool
|
|
proxy: bool
|
|
enabled: bool
|
|
params: List[ParameterDescription]
|
|
|
|
@classmethod
|
|
def from_dict(cls, model_data: Dict) -> "SupportedModel":
|
|
params = model_data.get("params", [])
|
|
if params:
|
|
params = [ParameterDescription(**param) for param in params]
|
|
model_data["params"] = params
|
|
return cls(**model_data)
|
|
|
|
|
|
@dataclass
|
|
class WorkerSupportedModel:
|
|
host: str
|
|
port: int
|
|
models: List[SupportedModel]
|
|
|
|
@classmethod
|
|
def from_dict(cls, worker_data: Dict) -> "WorkerSupportedModel":
|
|
models = [
|
|
SupportedModel.from_dict(model_data) for model_data in worker_data["models"]
|
|
]
|
|
worker_data["models"] = models
|
|
return cls(**worker_data)
|
|
|
|
|
|
@dataclass
|
|
class FlatSupportedModel(SupportedModel):
|
|
"""For web"""
|
|
|
|
host: str
|
|
port: int
|
|
|
|
@staticmethod
|
|
def from_supports(
|
|
supports: List[WorkerSupportedModel],
|
|
) -> List["FlatSupportedModel"]:
|
|
results = []
|
|
for s in supports:
|
|
host, port, models = s.host, s.port, s.models
|
|
for m in models:
|
|
kwargs = asdict(m)
|
|
kwargs["host"] = host
|
|
kwargs["port"] = port
|
|
results.append(FlatSupportedModel(**kwargs))
|
|
return results
|