DB-GPT/dbgpt/model/base.py
2024-07-05 15:20:21 +08:00

124 lines
3.1 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from dataclasses import asdict, dataclass
from datetime import datetime
from enum import Enum
from typing import Dict, List, Optional
from dbgpt.util.parameter_utils import ParameterDescription
class ModelType:
""" "Type of model"""
HF = "huggingface"
LLAMA_CPP = "llama.cpp"
PROXY = "proxy"
VLLM = "vllm"
# TODO, support more model type
@dataclass
class ModelInstance:
"""Model instance info"""
model_name: str
host: str
port: int
weight: Optional[float] = 1.0
check_healthy: Optional[bool] = True
healthy: Optional[bool] = False
enabled: Optional[bool] = True
prompt_template: Optional[str] = None
last_heartbeat: Optional[datetime] = None
def to_dict(self) -> Dict:
"""Convert to dict"""
return asdict(self)
class WorkerApplyType(str, Enum):
START = "start"
STOP = "stop"
RESTART = "restart"
UPDATE_PARAMS = "update_params"
@dataclass
class WorkerApplyOutput:
message: str
success: Optional[bool] = True
# The seconds cost to apply some action to worker instances
timecost: Optional[int] = -1
@staticmethod
def reduce(outs: List["WorkerApplyOutput"]) -> "WorkerApplyOutput":
"""Merge all outputs
Args:
outs (List["WorkerApplyOutput"]): The list of WorkerApplyOutput
"""
if not outs:
return WorkerApplyOutput("Not outputs")
combined_success = all(out.success for out in outs)
max_timecost = max(out.timecost for out in outs)
combined_message = "\n;".join(out.message for out in outs)
return WorkerApplyOutput(combined_message, combined_success, max_timecost)
@dataclass
class SupportedModel:
model: str
path: str
worker_type: str
path_exist: bool
proxy: bool
enabled: bool
params: List[ParameterDescription]
@classmethod
def from_dict(cls, model_data: Dict) -> "SupportedModel":
params = model_data.get("params", [])
if params:
params = [ParameterDescription(**param) for param in params]
model_data["params"] = params
return cls(**model_data)
@dataclass
class WorkerSupportedModel:
host: str
port: int
models: List[SupportedModel]
@classmethod
def from_dict(cls, worker_data: Dict) -> "WorkerSupportedModel":
models = [
SupportedModel.from_dict(model_data) for model_data in worker_data["models"]
]
worker_data["models"] = models
return cls(**worker_data)
@dataclass
class FlatSupportedModel(SupportedModel):
"""For web"""
host: str
port: int
@staticmethod
def from_supports(
supports: List[WorkerSupportedModel],
) -> List["FlatSupportedModel"]:
results = []
for s in supports:
host, port, models = s.host, s.port, s.models
for m in models:
kwargs = asdict(m)
kwargs["host"] = host
kwargs["port"] = port
results.append(FlatSupportedModel(**kwargs))
return results