mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-28 22:37:31 +00:00
149 lines
4.8 KiB
Python
149 lines
4.8 KiB
Python
"""
|
|
Fork from text-generation-webui https://github.com/oobabooga/text-generation-webui/blob/main/modules/llamacpp_model.py
|
|
"""
|
|
import logging
|
|
import re
|
|
from typing import Dict
|
|
|
|
import llama_cpp
|
|
import torch
|
|
|
|
from dbgpt.model.parameter import LlamaCppModelParameters
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
if torch.cuda.is_available() and not torch.version.hip:
|
|
try:
|
|
import llama_cpp_cuda
|
|
except:
|
|
llama_cpp_cuda = None
|
|
else:
|
|
llama_cpp_cuda = None
|
|
|
|
|
|
def llama_cpp_lib(prefer_cpu: bool = False):
|
|
if prefer_cpu or llama_cpp_cuda is None:
|
|
logger.info(f"Llama.cpp use cpu")
|
|
return llama_cpp
|
|
else:
|
|
return llama_cpp_cuda
|
|
|
|
|
|
def ban_eos_logits_processor(eos_token, input_ids, logits):
|
|
logits[eos_token] = -float("inf")
|
|
return logits
|
|
|
|
|
|
def get_params(model_path: str, model_params: LlamaCppModelParameters) -> Dict:
|
|
return {
|
|
"model_path": model_path,
|
|
"n_ctx": model_params.max_context_size,
|
|
"seed": model_params.seed,
|
|
"n_threads": model_params.n_threads,
|
|
"n_batch": model_params.n_batch,
|
|
"use_mmap": True,
|
|
"use_mlock": False,
|
|
"low_vram": False,
|
|
"n_gpu_layers": 0 if model_params.prefer_cpu else model_params.n_gpu_layers,
|
|
"n_gqa": model_params.n_gqa,
|
|
"logits_all": True,
|
|
"rms_norm_eps": model_params.rms_norm_eps,
|
|
}
|
|
|
|
|
|
class LlamaCppModel:
|
|
def __init__(self):
|
|
self.initialized = False
|
|
self.model = None
|
|
self.verbose = True
|
|
|
|
def __del__(self):
|
|
if self.model:
|
|
self.model.__del__()
|
|
|
|
@classmethod
|
|
def from_pretrained(self, model_path, model_params: LlamaCppModelParameters):
|
|
Llama = llama_cpp_lib(prefer_cpu=model_params.prefer_cpu).Llama
|
|
LlamaCache = llama_cpp_lib(prefer_cpu=model_params.prefer_cpu).LlamaCache
|
|
|
|
result = self()
|
|
cache_capacity = 0
|
|
cache_capacity_str = model_params.cache_capacity
|
|
if cache_capacity_str is not None:
|
|
if "GiB" in cache_capacity_str:
|
|
cache_capacity = (
|
|
int(re.sub("[a-zA-Z]", "", cache_capacity_str)) * 1000 * 1000 * 1000
|
|
)
|
|
elif "MiB" in cache_capacity_str:
|
|
cache_capacity = (
|
|
int(re.sub("[a-zA-Z]", "", cache_capacity_str)) * 1000 * 1000
|
|
)
|
|
else:
|
|
cache_capacity = int(cache_capacity_str)
|
|
|
|
params = get_params(model_path, model_params)
|
|
logger.info("Cache capacity is " + str(cache_capacity) + " bytes")
|
|
logger.info(f"Load LLama model with params: {params}")
|
|
|
|
result.model = Llama(**params)
|
|
result.verbose = model_params.verbose
|
|
if cache_capacity > 0:
|
|
result.model.set_cache(LlamaCache(capacity_bytes=cache_capacity))
|
|
|
|
# This is ugly, but the model and the tokenizer are the same object in this library.
|
|
return result, result
|
|
|
|
def encode(self, string):
|
|
if type(string) is str:
|
|
string = string.encode()
|
|
|
|
return self.model.tokenize(string)
|
|
|
|
def decode(self, tokens):
|
|
return self.model.detokenize(tokens)
|
|
|
|
def generate_streaming(self, params, context_len: int):
|
|
# LogitsProcessorList = llama_cpp_lib().LogitsProcessorList
|
|
|
|
# Read parameters
|
|
prompt = params["prompt"]
|
|
if self.verbose:
|
|
print(f"Prompt of model: \n{prompt}")
|
|
|
|
temperature = float(params.get("temperature", 1.0))
|
|
repetition_penalty = float(params.get("repetition_penalty", 1.1))
|
|
top_p = float(params.get("top_p", 1.0))
|
|
top_k = int(params.get("top_k", -1)) # -1 means disable
|
|
max_new_tokens = int(params.get("max_new_tokens", 2048))
|
|
echo = bool(params.get("echo", True))
|
|
|
|
max_src_len = context_len - max_new_tokens
|
|
# Handle truncation
|
|
prompt = self.encode(prompt)
|
|
prompt = prompt[-max_src_len:]
|
|
prompt = self.decode(prompt).decode("utf-8")
|
|
|
|
# TODO Compared with the original llama model, the Chinese effect of llama.cpp is very general, and it needs to be debugged
|
|
completion_chunks = self.model.create_completion(
|
|
prompt=prompt,
|
|
max_tokens=max_new_tokens,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
top_k=top_k,
|
|
repeat_penalty=repetition_penalty,
|
|
# tfs_z=params['tfs'],
|
|
# mirostat_mode=int(params['mirostat_mode']),
|
|
# mirostat_tau=params['mirostat_tau'],
|
|
# mirostat_eta=params['mirostat_eta'],
|
|
stream=True,
|
|
echo=echo,
|
|
logits_processor=None,
|
|
)
|
|
|
|
output = ""
|
|
for completion_chunk in completion_chunks:
|
|
text = completion_chunk["choices"][0]["text"]
|
|
output += text
|
|
# print(output)
|
|
yield output
|