DB-GPT/dbgpt/model/proxy/llms/chatgpt.py

304 lines
11 KiB
Python
Executable File

from __future__ import annotations
import importlib.metadata as metadata
import logging
from concurrent.futures import Executor
from typing import TYPE_CHECKING, Any, AsyncIterator, Dict, List, Optional, Union
from dbgpt.core import (
MessageConverter,
ModelMetadata,
ModelOutput,
ModelRequest,
ModelRequestContext,
)
from dbgpt.core.awel.flow import Parameter, ResourceCategory, register_resource
from dbgpt.model.parameter import ProxyModelParameters
from dbgpt.model.proxy.base import ProxyLLMClient
from dbgpt.model.proxy.llms.proxy_model import ProxyModel
from dbgpt.model.utils.chatgpt_utils import OpenAIParameters
from dbgpt.util.i18n_utils import _
if TYPE_CHECKING:
from httpx._types import ProxiesTypes
from openai import AsyncAzureOpenAI, AsyncOpenAI
ClientType = Union[AsyncAzureOpenAI, AsyncOpenAI]
logger = logging.getLogger(__name__)
async def chatgpt_generate_stream(
model: ProxyModel, tokenizer, params, device, context_len=2048
):
client: OpenAILLMClient = model.proxy_llm_client
context = ModelRequestContext(stream=True, user_name=params.get("user_name"))
request = ModelRequest.build_request(
client.default_model,
messages=params["messages"],
temperature=params.get("temperature"),
context=context,
max_new_tokens=params.get("max_new_tokens"),
)
async for r in client.generate_stream(request):
yield r
@register_resource(
label=_("OpenAI LLM Client"),
name="openai_llm_client",
category=ResourceCategory.LLM_CLIENT,
parameters=[
Parameter.build_from(
label=_("OpenAI API Key"),
name="apk_key",
type=str,
optional=True,
default=None,
description=_(
"OpenAI API Key, not required if you have set OPENAI_API_KEY "
"environment variable."
),
),
Parameter.build_from(
label=_("OpenAI API Base"),
name="api_base",
type=str,
optional=True,
default=None,
description=_(
"OpenAI API Base, not required if you have set OPENAI_API_BASE "
"environment variable."
),
),
],
documentation_url="https://github.com/openai/openai-python",
)
class OpenAILLMClient(ProxyLLMClient):
def __init__(
self,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
api_type: Optional[str] = None,
api_version: Optional[str] = None,
model: Optional[str] = None,
proxies: Optional["ProxiesTypes"] = None,
timeout: Optional[int] = 240,
model_alias: Optional[str] = "chatgpt_proxyllm",
context_length: Optional[int] = 8192,
openai_client: Optional["ClientType"] = None,
openai_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
):
try:
import openai
except ImportError as exc:
raise ValueError(
"Could not import python package: openai "
"Please install openai by command `pip install openai"
) from exc
self._openai_version = metadata.version("openai")
self._openai_less_then_v1 = not self._openai_version >= "1.0.0"
self.check_sdk_version(self._openai_version)
self._init_params = OpenAIParameters(
api_type=api_type,
api_base=api_base,
api_key=api_key,
api_version=api_version,
proxies=proxies,
full_url=kwargs.get("full_url"),
)
self._model = model
self._proxies = proxies
self._timeout = timeout
self._model_alias = model_alias
self._context_length = context_length
self._api_type = api_type
self._client = openai_client
self._openai_kwargs = openai_kwargs or {}
super().__init__(model_names=[model_alias], context_length=context_length)
if self._openai_less_then_v1:
from dbgpt.model.utils.chatgpt_utils import _initialize_openai
_initialize_openai(self._init_params)
@classmethod
def new_client(
cls,
model_params: ProxyModelParameters,
default_executor: Optional[Executor] = None,
) -> "OpenAILLMClient":
return cls(
api_key=model_params.proxy_api_key,
api_base=model_params.proxy_api_base,
api_type=model_params.proxy_api_type,
api_version=model_params.proxy_api_version,
model=model_params.proxyllm_backend,
proxies=model_params.http_proxy,
model_alias=model_params.model_name,
context_length=max(model_params.max_context_size, 8192),
full_url=model_params.proxy_server_url,
)
def check_sdk_version(self, version: str) -> None:
"""Check the sdk version of the client.
Raises:
ValueError: If check failed.
"""
pass
@property
def client(self) -> ClientType:
if self._openai_less_then_v1:
raise ValueError(
"Current model (Load by OpenAILLMClient) require openai.__version__>=1.0.0"
)
if self._client is None:
from dbgpt.model.utils.chatgpt_utils import _build_openai_client
self._api_type, self._client = _build_openai_client(
init_params=self._init_params
)
return self._client
@property
def default_model(self) -> str:
model = self._model
if not model:
model = "gpt-35-turbo" if self._api_type == "azure" else "gpt-3.5-turbo"
return model
def _build_request(
self, request: ModelRequest, stream: Optional[bool] = False
) -> Dict[str, Any]:
payload = {"stream": stream}
model = request.model or self.default_model
if self._openai_less_then_v1 and self._api_type == "azure":
payload["engine"] = model
else:
payload["model"] = model
# Apply openai kwargs
for k, v in self._openai_kwargs.items():
payload[k] = v
if request.temperature:
payload["temperature"] = request.temperature
if request.max_new_tokens:
payload["max_tokens"] = request.max_new_tokens
return payload
async def generate(
self,
request: ModelRequest,
message_converter: Optional[MessageConverter] = None,
) -> ModelOutput:
request = self.local_covert_message(request, message_converter)
messages = request.to_common_messages()
payload = self._build_request(request)
logger.info(
f"Send request to openai({self._openai_version}), payload: {payload}\n\n messages:\n{messages}"
)
try:
if self._openai_less_then_v1:
return await self.generate_less_then_v1(messages, payload)
else:
return await self.generate_v1(messages, payload)
except Exception as e:
return ModelOutput(
text=f"**LLMServer Generate Error, Please CheckErrorInfo.**: {e}",
error_code=1,
)
async def generate_stream(
self,
request: ModelRequest,
message_converter: Optional[MessageConverter] = None,
) -> AsyncIterator[ModelOutput]:
request = self.local_covert_message(request, message_converter)
messages = request.to_common_messages()
payload = self._build_request(request, stream=True)
logger.info(
f"Send request to openai({self._openai_version}), payload: {payload}\n\n messages:\n{messages}"
)
if self._openai_less_then_v1:
async for r in self.generate_stream_less_then_v1(messages, payload):
yield r
else:
async for r in self.generate_stream_v1(messages, payload):
yield r
async def generate_v1(
self, messages: List[Dict[str, Any]], payload: Dict[str, Any]
) -> ModelOutput:
chat_completion = await self.client.chat.completions.create(
messages=messages, **payload
)
text = chat_completion.choices[0].message.content
usage = chat_completion.usage.dict()
return ModelOutput(text=text, error_code=0, usage=usage)
async def generate_less_then_v1(
self, messages: List[Dict[str, Any]], payload: Dict[str, Any]
) -> ModelOutput:
import openai
chat_completion = await openai.ChatCompletion.acreate(
messages=messages, **payload
)
text = chat_completion.choices[0].message.content
usage = chat_completion.usage.to_dict()
return ModelOutput(text=text, error_code=0, usage=usage)
async def generate_stream_v1(
self, messages: List[Dict[str, Any]], payload: Dict[str, Any]
) -> AsyncIterator[ModelOutput]:
chat_completion = await self.client.chat.completions.create(
messages=messages, **payload
)
text = ""
async for r in chat_completion:
if len(r.choices) == 0:
continue
# Check for empty 'choices' issue in Azure GPT-4o responses
if r.choices[0] is not None and r.choices[0].delta is None:
continue
if r.choices[0].delta.content is not None:
content = r.choices[0].delta.content
text += content
yield ModelOutput(text=text, error_code=0)
async def generate_stream_less_then_v1(
self, messages: List[Dict[str, Any]], payload: Dict[str, Any]
) -> AsyncIterator[ModelOutput]:
import openai
res = await openai.ChatCompletion.acreate(messages=messages, **payload)
text = ""
async for r in res:
if not r.get("choices"):
continue
if r["choices"][0]["delta"].get("content") is not None:
content = r["choices"][0]["delta"]["content"]
text += content
yield ModelOutput(text=text, error_code=0)
async def models(self) -> List[ModelMetadata]:
model_metadata = ModelMetadata(
model=self._model_alias,
context_length=await self.get_context_length(),
)
return [model_metadata]
async def get_context_length(self) -> int:
"""Get the context length of the model.
Returns:
int: The context length.
# TODO: This is a temporary solution. We should have a better way to get the context length.
eg. get real context length from the openai api.
"""
return self._context_length