mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-31 15:47:05 +00:00
186 lines
6.3 KiB
Python
186 lines
6.3 KiB
Python
import os
|
|
from concurrent.futures import Executor
|
|
from typing import Any, Dict, Iterator, List, Optional, Tuple
|
|
|
|
from dbgpt.core import (
|
|
MessageConverter,
|
|
ModelMessage,
|
|
ModelOutput,
|
|
ModelRequest,
|
|
ModelRequestContext,
|
|
)
|
|
from dbgpt.core.interface.message import parse_model_messages
|
|
from dbgpt.model.parameter import ProxyModelParameters
|
|
from dbgpt.model.proxy.base import ProxyLLMClient
|
|
from dbgpt.model.proxy.llms.proxy_model import ProxyModel
|
|
|
|
GEMINI_DEFAULT_MODEL = "gemini-pro"
|
|
|
|
safety_settings = [
|
|
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
|
{
|
|
"category": "HARM_CATEGORY_HATE_SPEECH",
|
|
"threshold": "BLOCK_MEDIUM_AND_ABOVE",
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
|
"threshold": "BLOCK_MEDIUM_AND_ABOVE",
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
|
"threshold": "BLOCK_MEDIUM_AND_ABOVE",
|
|
},
|
|
]
|
|
|
|
|
|
def gemini_generate_stream(
|
|
model: ProxyModel, tokenizer, params, device, context_len=2048
|
|
):
|
|
model_params = model.get_params()
|
|
print(f"Model: {model}, model_params: {model_params}")
|
|
client: GeminiLLMClient = model.proxy_llm_client
|
|
context = ModelRequestContext(stream=True, user_name=params.get("user_name"))
|
|
request = ModelRequest.build_request(
|
|
client.default_model,
|
|
messages=params["messages"],
|
|
temperature=params.get("temperature"),
|
|
context=context,
|
|
max_new_tokens=params.get("max_new_tokens"),
|
|
)
|
|
for r in client.sync_generate_stream(request):
|
|
yield r
|
|
|
|
|
|
def _transform_to_gemini_messages(
|
|
messages: List[ModelMessage],
|
|
) -> Tuple[str, List[Dict[str, Any]]]:
|
|
"""Transform messages to gemini format
|
|
|
|
See https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/getting-started/intro_gemini_python.ipynb
|
|
|
|
Args:
|
|
messages (List[ModelMessage]): messages
|
|
|
|
Returns:
|
|
Tuple[str, List[Dict[str, Any]]]: user_prompt, gemini_hist
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
messages = [
|
|
ModelMessage(role="human", content="Hello"),
|
|
ModelMessage(role="ai", content="Hi there!"),
|
|
ModelMessage(role="human", content="How are you?"),
|
|
]
|
|
user_prompt, gemini_hist = _transform_to_gemini_messages(messages)
|
|
assert user_prompt == "How are you?"
|
|
assert gemini_hist == [
|
|
{"role": "user", "parts": {"text": "Hello"}},
|
|
{"role": "model", "parts": {"text": "Hi there!"}},
|
|
]
|
|
"""
|
|
# TODO raise error if messages has system message
|
|
user_prompt, system_messages, history_messages = parse_model_messages(messages)
|
|
if system_messages:
|
|
raise ValueError("Gemini does not support system role")
|
|
gemini_hist = []
|
|
if history_messages:
|
|
for user_message, model_message in history_messages:
|
|
gemini_hist.append({"role": "user", "parts": {"text": user_message}})
|
|
gemini_hist.append({"role": "model", "parts": {"text": model_message}})
|
|
return user_prompt, gemini_hist
|
|
|
|
|
|
class GeminiLLMClient(ProxyLLMClient):
|
|
def __init__(
|
|
self,
|
|
model: Optional[str] = None,
|
|
api_key: Optional[str] = None,
|
|
api_base: Optional[str] = None,
|
|
model_alias: Optional[str] = "gemini_proxyllm",
|
|
context_length: Optional[int] = 8192,
|
|
executor: Optional[Executor] = None,
|
|
):
|
|
try:
|
|
import google.generativeai as genai
|
|
|
|
except ImportError as exc:
|
|
raise ValueError(
|
|
"Could not import python package: generativeai "
|
|
"Please install dashscope by command `pip install google-generativeai"
|
|
) from exc
|
|
if not model:
|
|
model = GEMINI_DEFAULT_MODEL
|
|
self._api_key = api_key if api_key else os.getenv("GEMINI_PROXY_API_KEY")
|
|
self._api_base = api_base if api_base else os.getenv("GEMINI_PROXY_API_BASE")
|
|
self._model = model
|
|
if not self._api_key:
|
|
raise RuntimeError("api_key can't be empty")
|
|
|
|
if self._api_base:
|
|
from google.api_core import client_options
|
|
|
|
client_opts = client_options.ClientOptions(api_endpoint=self._api_base)
|
|
genai.configure(
|
|
api_key=self._api_key, transport="rest", client_options=client_opts
|
|
)
|
|
else:
|
|
genai.configure(api_key=self._api_key)
|
|
super().__init__(
|
|
model_names=[model, model_alias],
|
|
context_length=context_length,
|
|
executor=executor,
|
|
)
|
|
|
|
@classmethod
|
|
def new_client(
|
|
cls,
|
|
model_params: ProxyModelParameters,
|
|
default_executor: Optional[Executor] = None,
|
|
) -> "GeminiLLMClient":
|
|
return cls(
|
|
model=model_params.proxyllm_backend,
|
|
api_key=model_params.proxy_api_key,
|
|
api_base=model_params.proxy_api_base,
|
|
model_alias=model_params.model_name,
|
|
context_length=model_params.max_context_size,
|
|
executor=default_executor,
|
|
)
|
|
|
|
@property
|
|
def default_model(self) -> str:
|
|
return self._model
|
|
|
|
def sync_generate_stream(
|
|
self,
|
|
request: ModelRequest,
|
|
message_converter: Optional[MessageConverter] = None,
|
|
) -> Iterator[ModelOutput]:
|
|
request = self.local_covert_message(request, message_converter)
|
|
try:
|
|
import google.generativeai as genai
|
|
|
|
generation_config = {
|
|
"temperature": request.temperature,
|
|
"top_p": 1,
|
|
"top_k": 1,
|
|
"max_output_tokens": request.max_new_tokens,
|
|
}
|
|
model = genai.GenerativeModel(
|
|
model_name=self._model,
|
|
generation_config=generation_config,
|
|
safety_settings=safety_settings,
|
|
)
|
|
user_prompt, gemini_hist = _transform_to_gemini_messages(request.messages)
|
|
chat = model.start_chat(history=gemini_hist)
|
|
response = chat.send_message(user_prompt, stream=True)
|
|
text = ""
|
|
for chunk in response:
|
|
text += chunk.text
|
|
yield ModelOutput(text=text, error_code=0)
|
|
except Exception as e:
|
|
return ModelOutput(
|
|
text=f"**LLMServer Generate Error, Please CheckErrorInfo.**: {e}",
|
|
error_code=1,
|
|
)
|