mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-27 13:57:46 +00:00
73 lines
2.3 KiB
Python
73 lines
2.3 KiB
Python
#!/usr/bin/env python3
|
||
# -*- coding:utf-8 -*-
|
||
|
||
from pathlib import Path
|
||
from typing import Dict, List
|
||
|
||
import cachetools
|
||
|
||
from dbgpt.configs.model_config import EMBEDDING_MODEL_CONFIG, LLM_MODEL_CONFIG
|
||
from dbgpt.model.base import SupportedModel
|
||
from dbgpt.util.parameter_utils import _get_parameter_descriptions
|
||
|
||
|
||
def is_sentence_complete(output: str):
|
||
"""Check whether the output is a complete sentence."""
|
||
end_symbols = (".", "?", "!", "...", "。", "?", "!", "…", '"', "'", "”")
|
||
return output.endswith(end_symbols)
|
||
|
||
|
||
def is_partial_stop(output: str, stop_str: str):
|
||
"""Check whether the output contains a partial stop str."""
|
||
for i in range(0, min(len(output), len(stop_str))):
|
||
if stop_str.startswith(output[-i:]):
|
||
return True
|
||
return False
|
||
|
||
|
||
@cachetools.cached(cachetools.TTLCache(maxsize=100, ttl=60 * 5))
|
||
def list_supported_models():
|
||
from dbgpt.model.parameter import WorkerType
|
||
|
||
models = _list_supported_models(WorkerType.LLM.value, LLM_MODEL_CONFIG)
|
||
models += _list_supported_models(WorkerType.TEXT2VEC.value, EMBEDDING_MODEL_CONFIG)
|
||
return models
|
||
|
||
|
||
def _list_supported_models(
|
||
worker_type: str, model_config: Dict[str, str]
|
||
) -> List[SupportedModel]:
|
||
from dbgpt.model.adapter.loader import _get_model_real_path
|
||
from dbgpt.model.adapter.model_adapter import get_llm_model_adapter
|
||
|
||
ret = []
|
||
for model_name, model_path in model_config.items():
|
||
model_path = _get_model_real_path(model_name, model_path)
|
||
model = SupportedModel(
|
||
model=model_name,
|
||
path=model_path,
|
||
worker_type=worker_type,
|
||
path_exist=False,
|
||
proxy=False,
|
||
enabled=False,
|
||
params=None,
|
||
)
|
||
if "proxyllm" in model_name:
|
||
model.proxy = True
|
||
else:
|
||
path = Path(model_path)
|
||
model.path_exist = path.exists()
|
||
param_cls = None
|
||
try:
|
||
llm_adapter = get_llm_model_adapter(model_name, model_path)
|
||
param_cls = llm_adapter.model_param_class()
|
||
model.enabled = True
|
||
params = _get_parameter_descriptions(
|
||
param_cls, model_name=model_name, model_path=model_path
|
||
)
|
||
model.params = params
|
||
except Exception:
|
||
pass
|
||
ret.append(model)
|
||
return ret
|