mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-24 20:47:46 +00:00
Co-authored-by: hzh97 <2976151305@qq.com> Co-authored-by: Fangyin Cheng <staneyffer@gmail.com> Co-authored-by: licunxing <864255598@qq.com>
214 lines
5.8 KiB
Python
214 lines
5.8 KiB
Python
"""Module for Knowledge Base."""
|
|
|
|
from abc import ABC, abstractmethod
|
|
from enum import Enum
|
|
from typing import Any, Dict, List, Optional, Tuple, Type, Union
|
|
|
|
from dbgpt.core import Document
|
|
from dbgpt.rag.text_splitter.text_splitter import (
|
|
MarkdownHeaderTextSplitter,
|
|
PageTextSplitter,
|
|
ParagraphTextSplitter,
|
|
RecursiveCharacterTextSplitter,
|
|
SeparatorTextSplitter,
|
|
TextSplitter,
|
|
)
|
|
|
|
|
|
class DocumentType(Enum):
|
|
"""Document Type Enum."""
|
|
|
|
PDF = "pdf"
|
|
CSV = "csv"
|
|
MARKDOWN = "md"
|
|
PPTX = "pptx"
|
|
DOCX = "docx"
|
|
TXT = "txt"
|
|
HTML = "html"
|
|
DATASOURCE = "datasource"
|
|
EXCEL = "xlsx"
|
|
|
|
|
|
class KnowledgeType(Enum):
|
|
"""Knowledge Type Enum."""
|
|
|
|
DOCUMENT = "DOCUMENT"
|
|
URL = "URL"
|
|
TEXT = "TEXT"
|
|
# TODO: Remove this type
|
|
FIN_REPORT = "FIN_REPORT"
|
|
|
|
@property
|
|
def type(self):
|
|
"""Get type."""
|
|
return DocumentType
|
|
|
|
@classmethod
|
|
def get_by_value(cls, value) -> "KnowledgeType":
|
|
"""Get Enum member by value.
|
|
|
|
Args:
|
|
value(any): value
|
|
|
|
Returns:
|
|
KnowledgeType: Enum member
|
|
"""
|
|
for member in cls:
|
|
if member.value == value:
|
|
return member
|
|
raise ValueError(f"{value} is not a valid value for {cls.__name__}")
|
|
|
|
|
|
_STRATEGY_ENUM_TYPE = Tuple[Type[TextSplitter], List, str, str]
|
|
|
|
|
|
class ChunkStrategy(Enum):
|
|
"""Chunk Strategy Enum."""
|
|
|
|
CHUNK_BY_SIZE: _STRATEGY_ENUM_TYPE = (
|
|
RecursiveCharacterTextSplitter,
|
|
[
|
|
{
|
|
"param_name": "chunk_size",
|
|
"param_type": "int",
|
|
"default_value": 512,
|
|
"description": "The size of the data chunks used in processing.",
|
|
},
|
|
{
|
|
"param_name": "chunk_overlap",
|
|
"param_type": "int",
|
|
"default_value": 50,
|
|
"description": "The amount of overlap between adjacent data chunks.",
|
|
},
|
|
],
|
|
"chunk size",
|
|
"split document by chunk size",
|
|
)
|
|
CHUNK_BY_PAGE: _STRATEGY_ENUM_TYPE = (
|
|
PageTextSplitter,
|
|
[],
|
|
"page",
|
|
"split document by page",
|
|
)
|
|
CHUNK_BY_PARAGRAPH: _STRATEGY_ENUM_TYPE = (
|
|
ParagraphTextSplitter,
|
|
[
|
|
{
|
|
"param_name": "separator",
|
|
"param_type": "string",
|
|
"default_value": "\\n",
|
|
"description": "paragraph separator",
|
|
}
|
|
],
|
|
"paragraph",
|
|
"split document by paragraph",
|
|
)
|
|
CHUNK_BY_SEPARATOR: _STRATEGY_ENUM_TYPE = (
|
|
SeparatorTextSplitter,
|
|
[
|
|
{
|
|
"param_name": "separator",
|
|
"param_type": "string",
|
|
"default_value": "\\n",
|
|
"description": "chunk separator",
|
|
},
|
|
{
|
|
"param_name": "enable_merge",
|
|
"param_type": "boolean",
|
|
"default_value": False,
|
|
"description": "Whether to merge according to the chunk_size after "
|
|
"splitting by the separator.",
|
|
},
|
|
],
|
|
"separator",
|
|
"split document by separator",
|
|
)
|
|
CHUNK_BY_MARKDOWN_HEADER: _STRATEGY_ENUM_TYPE = (
|
|
MarkdownHeaderTextSplitter,
|
|
[],
|
|
"markdown header",
|
|
"split document by markdown header",
|
|
)
|
|
|
|
def __init__(self, splitter_class, parameters, alias, description):
|
|
"""Create a new ChunkStrategy with the given splitter_class."""
|
|
self.splitter_class = splitter_class
|
|
self.parameters = parameters
|
|
self.alias = alias
|
|
self.description = description
|
|
|
|
def match(self, *args, **kwargs) -> TextSplitter:
|
|
"""Match and build splitter."""
|
|
kwargs = {k: v for k, v in kwargs.items() if v is not None}
|
|
return self.value[0](*args, **kwargs)
|
|
|
|
|
|
class Knowledge(ABC):
|
|
"""Knowledge Base Class."""
|
|
|
|
def __init__(
|
|
self,
|
|
path: Optional[str] = None,
|
|
knowledge_type: Optional[KnowledgeType] = None,
|
|
loader: Optional[Any] = None,
|
|
metadata: Optional[Dict[str, Union[str, List[str]]]] = None,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""Initialize with Knowledge arguments."""
|
|
self._path = path
|
|
self._type = knowledge_type
|
|
self._loader = loader
|
|
self._metadata = metadata
|
|
|
|
def load(self) -> List[Document]:
|
|
"""Load knowledge from data loader."""
|
|
documents = self._load()
|
|
return self._postprocess(documents)
|
|
|
|
def extract(self, documents: List[Document]) -> List[Document]:
|
|
"""Extract knowledge from text."""
|
|
return documents
|
|
|
|
@classmethod
|
|
@abstractmethod
|
|
def type(cls) -> KnowledgeType:
|
|
"""Get knowledge type."""
|
|
|
|
@classmethod
|
|
def document_type(cls) -> Any:
|
|
"""Get document type."""
|
|
return None
|
|
|
|
def _postprocess(self, docs: List[Document]) -> List[Document]:
|
|
"""Post process knowledge from data loader."""
|
|
return docs
|
|
|
|
@property
|
|
def file_path(self):
|
|
"""Get file path."""
|
|
return self._path
|
|
|
|
@abstractmethod
|
|
def _load(self) -> List[Document]:
|
|
"""Preprocess knowledge from data loader."""
|
|
|
|
@classmethod
|
|
def support_chunk_strategy(cls) -> List[ChunkStrategy]:
|
|
"""Return supported chunk strategy."""
|
|
return [
|
|
ChunkStrategy.CHUNK_BY_SIZE,
|
|
ChunkStrategy.CHUNK_BY_PAGE,
|
|
ChunkStrategy.CHUNK_BY_PARAGRAPH,
|
|
ChunkStrategy.CHUNK_BY_MARKDOWN_HEADER,
|
|
ChunkStrategy.CHUNK_BY_SEPARATOR,
|
|
]
|
|
|
|
@classmethod
|
|
def default_chunk_strategy(cls) -> ChunkStrategy:
|
|
"""Return default chunk strategy.
|
|
|
|
Returns:
|
|
ChunkStrategy: default chunk strategy
|
|
"""
|
|
return ChunkStrategy.CHUNK_BY_SIZE
|