mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-25 21:14:06 +00:00
115 lines
3.7 KiB
Python
115 lines
3.7 KiB
Python
"""Excel Knowledge."""
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
import pandas as pd
|
|
|
|
from dbgpt.core import Document
|
|
from dbgpt.rag.knowledge.base import (
|
|
ChunkStrategy,
|
|
DocumentType,
|
|
Knowledge,
|
|
KnowledgeType,
|
|
)
|
|
|
|
|
|
class ExcelKnowledge(Knowledge):
|
|
"""Excel Knowledge."""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: Optional[str] = None,
|
|
knowledge_type: Optional[KnowledgeType] = KnowledgeType.DOCUMENT,
|
|
source_column: Optional[str] = None,
|
|
encoding: Optional[str] = "utf-8",
|
|
loader: Optional[Any] = None,
|
|
metadata: Optional[Dict[str, Union[str, List[str]]]] = None,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""Create xlsx Knowledge with Knowledge arguments.
|
|
|
|
Args:
|
|
file_path(str, optional): file path
|
|
knowledge_type(KnowledgeType, optional): knowledge type
|
|
source_column(str, optional): source column
|
|
encoding(str, optional): csv encoding
|
|
loader(Any, optional): loader
|
|
"""
|
|
super().__init__(
|
|
path=file_path,
|
|
knowledge_type=knowledge_type,
|
|
data_loader=loader,
|
|
metadata=metadata,
|
|
**kwargs,
|
|
)
|
|
self._encoding = encoding
|
|
self._source_column = source_column
|
|
|
|
def _load(self) -> List[Document]:
|
|
"""Load csv document from loader."""
|
|
if self._loader:
|
|
documents = self._loader.load()
|
|
else:
|
|
docs = []
|
|
if not self._path:
|
|
raise ValueError("file path is required")
|
|
|
|
excel_file = pd.ExcelFile(self._path)
|
|
sheet_names = excel_file.sheet_names
|
|
for sheet_name in sheet_names:
|
|
df = excel_file.parse(sheet_name)
|
|
for index, row in df.iterrows():
|
|
strs = []
|
|
for column_name, column_value in row.items():
|
|
if column_name is None or column_value is None:
|
|
continue
|
|
|
|
column_name = str(column_name)
|
|
column_value = str(column_value)
|
|
strs.append(f"{column_name.strip()}: {column_value.strip()}")
|
|
|
|
content = "\n".join(strs)
|
|
try:
|
|
source = (
|
|
row[self._source_column]
|
|
if self._source_column is not None
|
|
else self._path
|
|
)
|
|
except KeyError:
|
|
raise ValueError(
|
|
f"Source column '{self._source_column}' not in CSV "
|
|
f"file."
|
|
)
|
|
|
|
metadata = {"source": source, "row": index}
|
|
if self._metadata:
|
|
metadata.update(self._metadata) # type: ignore
|
|
doc = Document(content=content, metadata=metadata)
|
|
docs.append(doc)
|
|
|
|
return docs
|
|
|
|
return [Document.langchain2doc(lc_document) for lc_document in documents]
|
|
|
|
@classmethod
|
|
def support_chunk_strategy(cls) -> List[ChunkStrategy]:
|
|
"""Return support chunk strategy."""
|
|
return [
|
|
ChunkStrategy.CHUNK_BY_SIZE,
|
|
ChunkStrategy.CHUNK_BY_SEPARATOR,
|
|
]
|
|
|
|
@classmethod
|
|
def default_chunk_strategy(cls) -> ChunkStrategy:
|
|
"""Return default chunk strategy."""
|
|
return ChunkStrategy.CHUNK_BY_SIZE
|
|
|
|
@classmethod
|
|
def type(cls) -> KnowledgeType:
|
|
"""Knowledge type of CSV."""
|
|
return KnowledgeType.DOCUMENT
|
|
|
|
@classmethod
|
|
def document_type(cls) -> DocumentType:
|
|
"""Return document type."""
|
|
return DocumentType.EXCEL
|