mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-23 12:21:08 +00:00
98 lines
3.0 KiB
Python
98 lines
3.0 KiB
Python
"""HTML Knowledge."""
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
import chardet
|
|
|
|
from dbgpt.core import Document
|
|
from dbgpt.rag.knowledge.base import (
|
|
ChunkStrategy,
|
|
DocumentType,
|
|
Knowledge,
|
|
KnowledgeType,
|
|
)
|
|
|
|
|
|
class HTMLKnowledge(Knowledge):
|
|
"""HTML Knowledge."""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: Optional[str] = None,
|
|
knowledge_type: KnowledgeType = KnowledgeType.DOCUMENT,
|
|
loader: Optional[Any] = None,
|
|
metadata: Optional[Dict[str, Union[str, List[str]]]] = None,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""Create HTML Knowledge with Knowledge arguments.
|
|
|
|
Args:
|
|
file_path(str, optional): file path
|
|
knowledge_type(KnowledgeType, optional): knowledge type
|
|
loader(Any, optional): loader
|
|
"""
|
|
super().__init__(
|
|
path=file_path,
|
|
knowledge_type=knowledge_type,
|
|
data_loader=loader,
|
|
metadata=metadata,
|
|
**kwargs,
|
|
)
|
|
|
|
def _load(self) -> List[Document]:
|
|
"""Load html document from loader."""
|
|
if self._loader:
|
|
documents = self._loader.load()
|
|
else:
|
|
if not self._path:
|
|
raise ValueError("file path is required")
|
|
with open(self._path, "rb") as f:
|
|
raw_text = f.read()
|
|
result = chardet.detect(raw_text)
|
|
if result["encoding"] is None:
|
|
text = raw_text.decode("utf-8")
|
|
else:
|
|
text = raw_text.decode(result["encoding"])
|
|
metadata = {"source": self._path}
|
|
if self._metadata:
|
|
metadata.update(self._metadata) # type: ignore
|
|
return [Document(content=text, metadata=metadata)]
|
|
|
|
return [Document.langchain2doc(lc_document) for lc_document in documents]
|
|
|
|
def _postprocess(self, documents: List[Document]):
|
|
import markdown
|
|
|
|
for i, d in enumerate(documents):
|
|
content = markdown.markdown(d.content)
|
|
from bs4 import BeautifulSoup
|
|
|
|
soup = BeautifulSoup(content, "html.parser")
|
|
for tag in soup(["!doctype", "meta", "i.fa"]):
|
|
tag.extract()
|
|
documents[i].content = soup.get_text()
|
|
documents[i].content = documents[i].content.replace("\n", " ")
|
|
return documents
|
|
|
|
@classmethod
|
|
def support_chunk_strategy(cls):
|
|
"""Return support chunk strategy."""
|
|
return [
|
|
ChunkStrategy.CHUNK_BY_SIZE,
|
|
ChunkStrategy.CHUNK_BY_SEPARATOR,
|
|
]
|
|
|
|
@classmethod
|
|
def default_chunk_strategy(cls) -> ChunkStrategy:
|
|
"""Return default chunk strategy."""
|
|
return ChunkStrategy.CHUNK_BY_SIZE
|
|
|
|
@classmethod
|
|
def type(cls) -> KnowledgeType:
|
|
"""Return knowledge type."""
|
|
return KnowledgeType.DOCUMENT
|
|
|
|
@classmethod
|
|
def document_type(cls) -> DocumentType:
|
|
"""Return document type."""
|
|
return DocumentType.HTML
|