mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-29 14:57:35 +00:00
104 lines
3.3 KiB
Python
104 lines
3.3 KiB
Python
"""PDF Knowledge."""
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
from dbgpt.core import Document
|
|
from dbgpt.rag.knowledge.base import (
|
|
ChunkStrategy,
|
|
DocumentType,
|
|
Knowledge,
|
|
KnowledgeType,
|
|
)
|
|
|
|
|
|
class PDFKnowledge(Knowledge):
|
|
"""PDF Knowledge."""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: Optional[str] = None,
|
|
knowledge_type: KnowledgeType = KnowledgeType.DOCUMENT,
|
|
loader: Optional[Any] = None,
|
|
language: Optional[str] = "zh",
|
|
metadata: Optional[Dict[str, Union[str, List[str]]]] = None,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""Create PDF Knowledge with Knowledge arguments.
|
|
|
|
Args:
|
|
file_path(str, optional): file path
|
|
knowledge_type(KnowledgeType, optional): knowledge type
|
|
loader(Any, optional): loader
|
|
language(str, optional): language
|
|
"""
|
|
super().__init__(
|
|
path=file_path,
|
|
knowledge_type=knowledge_type,
|
|
data_loader=loader,
|
|
metadata=metadata,
|
|
**kwargs,
|
|
)
|
|
self._language = language
|
|
|
|
def _load(self) -> List[Document]:
|
|
"""Load pdf document from loader."""
|
|
if self._loader:
|
|
documents = self._loader.load()
|
|
else:
|
|
import pypdf
|
|
|
|
pages = []
|
|
documents = []
|
|
if not self._path:
|
|
raise ValueError("file path is required")
|
|
with open(self._path, "rb") as file:
|
|
reader = pypdf.PdfReader(file)
|
|
for page_num in range(len(reader.pages)):
|
|
_page = reader.pages[page_num]
|
|
pages.append((_page.extract_text(), page_num))
|
|
|
|
# cleaned_pages = []
|
|
for page, page_num in pages:
|
|
lines = page.splitlines()
|
|
|
|
cleaned_lines = []
|
|
for line in lines:
|
|
if self._language == "en":
|
|
words = list(line) # noqa: F841
|
|
else:
|
|
words = line.split() # noqa: F841
|
|
cleaned_lines.append(line)
|
|
page = "\n".join(cleaned_lines)
|
|
# cleaned_pages.append(page)
|
|
metadata = {"source": self._path, "page": page_num}
|
|
if self._metadata:
|
|
metadata.update(self._metadata) # type: ignore
|
|
# text = "\f".join(cleaned_pages)
|
|
document = Document(content=page, metadata=metadata)
|
|
documents.append(document)
|
|
return documents
|
|
return [Document.langchain2doc(lc_document) for lc_document in documents]
|
|
|
|
@classmethod
|
|
def support_chunk_strategy(cls) -> List[ChunkStrategy]:
|
|
"""Return support chunk strategy."""
|
|
return [
|
|
ChunkStrategy.CHUNK_BY_SIZE,
|
|
ChunkStrategy.CHUNK_BY_PAGE,
|
|
ChunkStrategy.CHUNK_BY_SEPARATOR,
|
|
]
|
|
|
|
@classmethod
|
|
def default_chunk_strategy(cls) -> ChunkStrategy:
|
|
"""Return default chunk strategy."""
|
|
return ChunkStrategy.CHUNK_BY_SIZE
|
|
|
|
@classmethod
|
|
def type(cls) -> KnowledgeType:
|
|
"""Return knowledge type."""
|
|
return KnowledgeType.DOCUMENT
|
|
|
|
@classmethod
|
|
def document_type(cls) -> DocumentType:
|
|
"""Document type of PDF."""
|
|
return DocumentType.PDF
|