DB-GPT/dbgpt/util/code_utils.py
2024-05-07 09:45:26 +08:00

471 lines
19 KiB
Python

import logging
import os
import pathlib
import re
import subprocess
import sys
import time
from concurrent.futures import ThreadPoolExecutor, TimeoutError
from hashlib import md5
from typing import Callable, Dict, List, Optional, Tuple, Union
# Regular expression for finding a code block
# ```[ \t]*(\w+)?[ \t]*\r?\n(.*?)[ \t]*\r?\n``` Matches multi-line code blocks.
# The [ \t]* matches the potential spaces before language name.
# The (\w+)? matches the language, where the ? indicates it is optional.
# The [ \t]* matches the potential spaces (not newlines) after language name.
# The \r?\n makes sure there is a linebreak after ```.
# The (.*?) matches the code itself (non-greedy).
# The \r?\n makes sure there is a linebreak before ```.
# The [ \t]* matches the potential spaces before closing ``` (the spec allows indentation).
CODE_BLOCK_PATTERN = r"```[ \t]*(\w+)?[ \t]*\r?\n(.*?)\r?\n[ \t]*```"
WORKING_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "extensions")
UNKNOWN = "unknown"
TIMEOUT_MSG = "Timeout"
DEFAULT_TIMEOUT = 60
WIN32 = sys.platform == "win32"
PATH_SEPARATOR = WIN32 and "\\" or "/"
logger = logging.getLogger(__name__)
def content_str(content: Union[str, List]) -> str:
if type(content) is str:
return content
rst = ""
for item in content:
if item["type"] == "text":
rst += item["text"]
else:
assert (
isinstance(item, dict) and item["type"] == "image_url"
), "Wrong content format."
rst += "<image>"
return rst
def infer_lang(code):
"""infer the language for the code.
TODO: make it robust.
"""
if (
code.startswith("python ")
or code.startswith("pip")
or code.startswith("python3 ")
):
return "sh"
# check if code is a valid python code
try:
compile(code, "test", "exec")
return "python"
except SyntaxError:
# not a valid python code
return UNKNOWN
# TODO: In the future move, to better support https://spec.commonmark.org/0.30/#fenced-code-blocks
# perhaps by using a full Markdown parser.
def extract_code(
text: Union[str, List],
pattern: str = CODE_BLOCK_PATTERN,
detect_single_line_code: bool = False,
default_lang: str = "python",
) -> List[Tuple[str, str]]:
"""Extract code from a text.
Args:
text (str or List): The content to extract code from. The content can be
a string or a list, as returned by standard GPT or multimodal GPT.
pattern (str, optional): The regular expression pattern for finding the
code block. Defaults to CODE_BLOCK_PATTERN.
detect_single_line_code (bool, optional): Enable the new feature for
extracting single line code. Defaults to False.
default_lang (str, optional): The default language to use when the language
Returns:
list: A list of tuples, each containing the language and the code.
If there is no code block in the input text, the language would be "unknown".
If there is code block but the language is not specified, the language would be "".
"""
text = content_str(text)
if not detect_single_line_code:
match = re.findall(pattern, text, flags=re.DOTALL)
return match if match else [(default_lang, text)]
# Extract both multi-line and single-line code block, separated by the | operator
# `([^`]+)`: Matches inline code.
code_pattern = re.compile(CODE_BLOCK_PATTERN + r"|`([^`]+)`")
code_blocks = code_pattern.findall(text)
# Extract the individual code blocks and languages from the matched groups
extracted = []
for lang, group1, group2 in code_blocks:
if group1:
extracted.append((lang.strip(), group1.strip()))
elif group2:
extracted.append(("", group2.strip()))
return extracted
if __name__ == "__main__":
print(
extract_code(
"""```python import requests from bs4 import BeautifulSoup from datetime import datetime, timedelta # Define the search query query = "LLM application" # Define the time range (last week) end_date = datetime.now().strftime("%Y-%m-%d") start_date = (datetime.now() - timedelta(days=7)).strftime("%Y-%m-%d") # Create the search URL url = f"https://arxiv.org/search/advanced?advanced=&terms-0-operator=AND&terms-0-term={query}&terms-0-field=title&classification-physics_archives=all&classification-include_cross_list=include&date-filter_by=specific_date&date-year=&date-from_date={start_date}&date-to_date={end_date}&date-date_type=submitted_date&abstracts=show&size=200&order=-announced_date_first" # Send a GET request to the search URL response = requests.get(url) # Parse the HTML content soup = BeautifulSoup(response.content, "html.parser") # Find all the paper titles and authors titles = soup.find_all("p", class_="title is-5 mathjax") authors = soup.find_all("p", class_="authors") # Print the results for i in range(len(titles)): print(f"Title: {titles[i].text.strip()}") print(f"Authors: {authors[i].text.strip()}") print("-------------------------") ``` This code uses the `requests` library to send a GET request to the advanced search page of arXiv. It searches for papers with the specified query ("LLM application") that were submitted in the last week. The code then uses `BeautifulSoup` to parse the HTML content of the search results page and extracts the paper titles and authors. Finally, it prints the titles and authors of the found papers."""
)
)
_IMPROVE_FUNCTION_CONFIG = {
"prompt": """Improve the function '{func_name}' to achieve the objective '{objective}'.
The current implementation of the function is as follows:
{file_string}""",
"model": "DEFAULT_MODEL",
"request_timeout": 600,
}
_IMPROVE_CODE_CONFIG = {
"prompt": """Analyze the code in the following files and return a list of suggestions for improvement{followup}, to achieve the objective of '{objective}'.
{code}
""",
"model": "DEFAULT_MODEL",
"request_timeout": 900,
}
def timeout_handler(signum, frame):
raise TimeoutError("Timed out!")
def _cmd(lang):
if lang.startswith("python") or lang in ["bash", "sh", "powershell"]:
return lang
if lang in ["shell"]:
return "sh"
if lang in ["ps1"]:
return "powershell"
raise NotImplementedError(f"{lang} not recognized in code execution")
def execute_code(
code: Optional[str] = None,
timeout: Optional[int] = None,
filename: Optional[str] = None,
work_dir: Optional[str] = None,
use_docker: Optional[Union[List[str], str, bool]] = None,
lang: Optional[str] = "python",
) -> Tuple[int, str, str]:
"""Execute code in a docker container.
This function is not tested on MacOS.
Args:
code (Optional, str): The code to execute.
If None, the code from the file specified by filename will be executed.
Either code or filename must be provided.
timeout (Optional, int): The maximum execution time in seconds.
If None, a default timeout will be used. The default timeout is 600 seconds. On Windows, the timeout is not enforced when use_docker=False.
filename (Optional, str): The file name to save the code or where the code is stored when `code` is None.
If None, a file with a randomly generated name will be created.
The randomly generated file will be deleted after execution.
The file name must be a relative path. Relative paths are relative to the working directory.
work_dir (Optional, str): The working directory for the code execution.
If None, a default working directory will be used.
The default working directory is the "extensions" directory under
"path_to_autogen".
use_docker (Optional, list, str or bool): The docker image to use for code execution.
If a list or a str of image name(s) is provided, the code will be executed in a docker container
with the first image successfully pulled.
If None, False or empty, the code will be executed in the current environment.
Default is None, which will be converted into an empty list when docker package is available.
Expected behaviour:
- If `use_docker` is explicitly set to True and the docker package is available, the code will run in a Docker container.
- If `use_docker` is explicitly set to True but the Docker package is missing, an error will be raised.
- If `use_docker` is not set (i.e., left default to None) and the Docker package is not available, a warning will be displayed, but the code will run natively.
If the code is executed in the current environment,
the code must be trusted.
lang (Optional, str): The language of the code. Default is "python".
Returns:
int: 0 if the code executes successfully.
str: The error message if the code fails to execute; the stdout otherwise.
image: The docker image name after container run when docker is used.
"""
if all((code is None, filename is None)):
error_msg = f"Either {code=} or {filename=} must be provided."
logger.error(error_msg)
raise AssertionError(error_msg)
# Warn if use_docker was unspecified (or None), and cannot be provided (the default).
# In this case the current behavior is to fall back to run natively, but this behavior
# is subject to change.
try:
import docker
try:
docker.version
except AttributeError:
docker = None
except ImportError:
docker = None
if use_docker is None:
if docker is None:
use_docker = False
logger.warning(
"execute_code was called without specifying a value for use_docker. Since the python docker package is not available, code will be run natively. Note: this fallback behavior is subject to change"
)
else:
# Default to true
use_docker = True
timeout = timeout or DEFAULT_TIMEOUT
original_filename = filename
if WIN32 and lang in ["sh", "shell"] and (not use_docker):
lang = "ps1"
if filename is None:
code_hash = md5(code.encode()).hexdigest()
# create a file with a automatically generated name
filename = f"tmp_code_{code_hash}.{'py' if lang.startswith('python') else lang}"
if work_dir is None:
work_dir = WORKING_DIR
filepath = os.path.join(work_dir, filename)
file_dir = os.path.dirname(filepath)
os.makedirs(file_dir, exist_ok=True)
if code is not None:
with open(filepath, "w", encoding="utf-8") as fout:
fout.write(code)
# check if already running in a docker container
in_docker_container = os.path.exists("/.dockerenv")
if not use_docker or in_docker_container:
# already running in a docker container
cmd = [
sys.executable if lang.startswith("python") else _cmd(lang),
f".\\{filename}" if WIN32 else filename,
]
if WIN32:
logger.warning(
"SIGALRM is not supported on Windows. No timeout will be enforced."
)
result = subprocess.run(
cmd,
cwd=work_dir,
capture_output=True,
text=True,
)
else:
with ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(
subprocess.run,
cmd,
cwd=work_dir,
capture_output=True,
text=True,
)
try:
result = future.result(timeout=timeout)
except TimeoutError:
if original_filename is None:
os.remove(filepath)
return 1, TIMEOUT_MSG, None
if original_filename is None:
os.remove(filepath)
if result.returncode:
logs = result.stderr
if original_filename is None:
abs_path = str(pathlib.Path(filepath).absolute())
logs = logs.replace(str(abs_path), "").replace(filename, "")
else:
abs_path = str(pathlib.Path(work_dir).absolute()) + PATH_SEPARATOR
logs = logs.replace(str(abs_path), "")
else:
logs = result.stdout
return result.returncode, logs, None
# create a docker client
client = docker.from_env()
image_list = (
["python:3-alpine", "python:3", "python:3-windowsservercore"]
if use_docker is True
else [use_docker]
if isinstance(use_docker, str)
else use_docker
)
for image in image_list:
# check if the image exists
try:
client.images.get(image)
break
except docker.errors.ImageNotFound:
# pull the image
print("Pulling image", image)
try:
client.images.pull(image)
break
except docker.errors.DockerException:
print("Failed to pull image", image)
# get a randomized str based on current time to wrap the exit code
exit_code_str = f"exitcode{time.time()}"
abs_path = pathlib.Path(work_dir).absolute()
cmd = [
"sh",
"-c",
f"{_cmd(lang)} {filename}; exit_code=$?; echo -n {exit_code_str}; echo -n $exit_code; echo {exit_code_str}",
]
# create a docker container
container = client.containers.run(
image,
command=cmd,
working_dir="/workspace",
detach=True,
# get absolute path to the working directory
volumes={abs_path: {"bind": "/workspace", "mode": "rw"}},
)
start_time = time.time()
while container.status != "exited" and time.time() - start_time < timeout:
# Reload the container object
container.reload()
if container.status != "exited":
container.stop()
container.remove()
if original_filename is None:
os.remove(filepath)
return 1, TIMEOUT_MSG, image
# get the container logs
logs = container.logs().decode("utf-8").rstrip()
# commit the image
tag = filename.replace("/", "")
container.commit(repository="python", tag=tag)
# remove the container
container.remove()
# check if the code executed successfully
exit_code = container.attrs["State"]["ExitCode"]
if exit_code == 0:
# extract the exit code from the logs
pattern = re.compile(f"{exit_code_str}(\\d+){exit_code_str}")
match = pattern.search(logs)
exit_code = 1 if match is None else int(match.group(1))
# remove the exit code from the logs
logs = logs if match is None else pattern.sub("", logs)
if original_filename is None:
os.remove(filepath)
if exit_code:
logs = logs.replace(
f"/workspace/{filename if original_filename is None else ''}", ""
)
# return the exit code, logs and image
return exit_code, logs, f"python:{tag}"
_GENERATE_ASSERTIONS_CONFIG = {
"prompt": """Given the signature and docstring, write the exactly same number of assertion(s) for the provided example(s) in the docstring, without assertion messages.
func signature:
{definition}
assertions:""",
"model": "FAST_MODEL",
"max_tokens": 256,
"stop": "\n\n",
}
def _remove_check(response):
"""Remove the check function from the response."""
# find the position of the check function
pos = response.find("def check(")
if pos == -1:
return response
return response[:pos]
def eval_function_completions(
responses: List[str],
definition: str,
test: Optional[str] = None,
entry_point: Optional[str] = None,
assertions: Optional[Union[str, Callable[[str], Tuple[str, float]]]] = None,
timeout: Optional[float] = 3,
use_docker: Optional[bool] = True,
) -> Dict:
"""(openai<1) Select a response from a list of responses for the function completion task (using generated assertions), and/or evaluate if the task is successful using a gold test.
Args:
responses (list): The list of responses.
definition (str): The input definition.
test (Optional, str): The test code.
entry_point (Optional, str): The name of the function.
assertions (Optional, str or Callable): The assertion code which serves as a filter of the responses, or an assertion generator.
When provided, only the responses that pass the assertions will be considered for the actual test (if provided).
timeout (Optional, float): The timeout for executing the code.
Returns:
dict: The success metrics.
"""
n = len(responses)
if assertions is None:
# no assertion filter
success_list = []
for i in range(n):
response = _remove_check(responses[i])
code = (
f"{response}\n{test}\ncheck({entry_point})"
if response.startswith("def")
else f"{definition}{response}\n{test}\ncheck({entry_point})"
)
success = execute_code(code, timeout=timeout, use_docker=use_docker)[0] == 0
success_list.append(success)
return {
"expected_success": 1 - pow(1 - sum(success_list) / n, n),
"success": any(s for s in success_list),
}
if callable(assertions) and n > 1:
# assertion generator
assertions, gen_cost = assertions(definition)
else:
assertions, gen_cost = None, 0
if n > 1 or test is None:
for i in range(n):
response = responses[i] = _remove_check(responses[i])
code = (
f"{response}\n{assertions}"
if response.startswith("def")
else f"{definition}{response}\n{assertions}"
)
succeed_assertions = (
execute_code(code, timeout=timeout, use_docker=use_docker)[0] == 0
)
if succeed_assertions:
break
else:
# just test, no need to check assertions
succeed_assertions = False
i, response = 0, responses[0]
if test is None:
# no test code
return {
"index_selected": i,
"succeed_assertions": succeed_assertions,
"gen_cost": gen_cost,
"assertions": assertions,
}
code_test = (
f"{response}\n{test}\ncheck({entry_point})"
if response.startswith("def")
else f"{definition}{response}\n{test}\ncheck({entry_point})"
)
success = execute_code(code_test, timeout=timeout, use_docker=use_docker)[0] == 0
return {
"index_selected": i,
"succeed_assertions": succeed_assertions,
"success": success,
"gen_cost": gen_cost,
"assertions": assertions,
}
_FUNC_COMPLETION_PROMPT = "# Python 3{definition}"
_FUNC_COMPLETION_STOP = ["\nclass", "\ndef", "\nif", "\nprint"]