mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-27 13:57:46 +00:00
86 lines
2.6 KiB
Python
86 lines
2.6 KiB
Python
import logging
|
|
from dataclasses import dataclass
|
|
from typing import List, Tuple
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _clear_model_cache(device="cuda"):
|
|
try:
|
|
# clear torch cache
|
|
import torch
|
|
|
|
_clear_torch_cache(device)
|
|
except ImportError:
|
|
logger.warn("Torch not installed, skip clear torch cache")
|
|
# TODO clear other cache
|
|
|
|
|
|
def _clear_torch_cache(device="cuda"):
|
|
import gc
|
|
|
|
import torch
|
|
|
|
gc.collect()
|
|
if device != "cpu":
|
|
if torch.has_mps:
|
|
try:
|
|
from torch.mps import empty_cache
|
|
|
|
empty_cache()
|
|
except Exception as e:
|
|
logger.warn(f"Clear mps torch cache error, {str(e)}")
|
|
elif torch.has_cuda:
|
|
device_count = torch.cuda.device_count()
|
|
for device_id in range(device_count):
|
|
cuda_device = f"cuda:{device_id}"
|
|
logger.info(f"Clear torch cache of device: {cuda_device}")
|
|
with torch.cuda.device(cuda_device):
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.ipc_collect()
|
|
else:
|
|
logger.info("No cuda or mps, not support clear torch cache yet")
|
|
|
|
|
|
@dataclass
|
|
class GPUInfo:
|
|
total_memory_gb: float
|
|
allocated_memory_gb: float
|
|
cached_memory_gb: float
|
|
available_memory_gb: float
|
|
|
|
|
|
def _get_current_cuda_memory() -> List[GPUInfo]:
|
|
try:
|
|
import torch
|
|
except ImportError:
|
|
logger.warn("Torch not installed")
|
|
return []
|
|
if torch.cuda.is_available():
|
|
num_gpus = torch.cuda.device_count()
|
|
gpu_infos = []
|
|
for gpu_id in range(num_gpus):
|
|
with torch.cuda.device(gpu_id):
|
|
device = torch.cuda.current_device()
|
|
gpu_properties = torch.cuda.get_device_properties(device)
|
|
total_memory = round(gpu_properties.total_memory / (1.0 * 1024**3), 2)
|
|
allocated_memory = round(
|
|
torch.cuda.memory_allocated() / (1.0 * 1024**3), 2
|
|
)
|
|
cached_memory = round(
|
|
torch.cuda.memory_reserved() / (1.0 * 1024**3), 2
|
|
)
|
|
available_memory = total_memory - allocated_memory
|
|
gpu_infos.append(
|
|
GPUInfo(
|
|
total_memory_gb=total_memory,
|
|
allocated_memory_gb=allocated_memory,
|
|
cached_memory_gb=cached_memory,
|
|
available_memory_gb=available_memory,
|
|
)
|
|
)
|
|
return gpu_infos
|
|
else:
|
|
logger.warn("CUDA is not available.")
|
|
return []
|