DB-GPT/dbgpt/util/similarity_util.py
2024-05-07 09:45:26 +08:00

81 lines
2.3 KiB
Python

"""Utility functions for calculating similarity."""
from typing import TYPE_CHECKING, Any, List, Sequence
if TYPE_CHECKING:
from dbgpt.core.interface.embeddings import Embeddings
def cosine_similarity(embedding1: List[float], embedding2: List[float]) -> float:
"""Calculate the cosine similarity between two vectors.
Args:
embedding1(List[float]): The first vector.
embedding2(List[float]): The second vector.
Returns:
float: The cosine similarity.
"""
try:
import numpy as np
except ImportError:
raise ImportError("numpy is required for SimilarityMetric")
dot_product = np.dot(embedding1, embedding2)
norm1 = np.linalg.norm(embedding1)
norm2 = np.linalg.norm(embedding2)
similarity = dot_product / (norm1 * norm2)
return similarity
def sigmoid_function(x: float) -> float:
"""Calculate the sigmoid function.
The sigmoid function is defined as:
.. math::
f(x) = \\frac{1}{1 + e^{-x}}
It is used to map the input to a value between 0 and 1.
Args:
x(float): The input to the sigmoid function.
Returns:
float: The output of the sigmoid function.
"""
try:
import numpy as np
except ImportError:
raise ImportError("numpy is required for sigmoid_function")
return 1 / (1 + np.exp(-x))
def calculate_cosine_similarity(
embeddings: "Embeddings", prediction: str, contexts: Sequence[str]
) -> Any:
"""Calculate the cosine similarity between a prediction and a list of contexts.
Args:
embeddings(Embeddings): The embeddings to use.
prediction(str): The prediction.
contexts(Sequence[str]): The contexts.
Returns:
numpy.ndarray: The cosine similarity.
"""
try:
import numpy as np
except ImportError:
raise ImportError("numpy is required for SimilarityMetric")
prediction_vec = np.asarray(embeddings.embed_query(prediction)).reshape(1, -1)
context_list = list(contexts)
context_list_vec = np.asarray(embeddings.embed_documents(context_list)).reshape(
len(contexts), -1
)
# cos(a,b) = dot(a,b) / (norm(a) * norm(b))
dot = np.dot(context_list_vec, prediction_vec.T).reshape(
-1,
)
norm = np.linalg.norm(context_list_vec, axis=1) * np.linalg.norm(
prediction_vec, axis=1
)
return dot / norm