DB-GPT/dbgpt/rag/knowledge/datasource.py
Cooper 9b0161e521
Feat rdb summary wide table (#2035)
Co-authored-by: dongzhancai1 <dongzhancai1@jd.com>
Co-authored-by: dong <dongzhancai@iie2.com>
2024-12-18 20:34:21 +08:00

94 lines
3.4 KiB
Python

"""Datasource Knowledge."""
from typing import Any, Dict, List, Optional, Union
from dbgpt.core import Document
from dbgpt.datasource import BaseConnector
from ..summary.gdbms_db_summary import _parse_db_summary as _parse_gdb_summary
from ..summary.rdbms_db_summary import _parse_db_summary_with_metadata
from .base import ChunkStrategy, DocumentType, Knowledge, KnowledgeType
class DatasourceKnowledge(Knowledge):
"""Datasource Knowledge."""
def __init__(
self,
connector: BaseConnector,
summary_template: str = "table_name: {table_name}",
separator: str = "--table-field-separator--",
knowledge_type: Optional[KnowledgeType] = KnowledgeType.DOCUMENT,
metadata: Optional[Dict[str, Union[str, List[str]]]] = None,
model_dimension: int = 512,
**kwargs: Any,
) -> None:
"""Create Datasource Knowledge with Knowledge arguments.
Args:
connector(BaseConnector): connector
summary_template(str, optional): summary template
separator(str, optional): separator used to separate
table's basic info and fields.
defaults `-- table-field-separator--`
knowledge_type(KnowledgeType, optional): knowledge type
metadata(Dict[str, Union[str, List[str]], optional): metadata
model_dimension(int, optional): The threshold for splitting field string
"""
self._separator = separator
self._connector = connector
self._summary_template = summary_template
self._model_dimension = model_dimension
super().__init__(knowledge_type=knowledge_type, metadata=metadata, **kwargs)
def _load(self) -> List[Document]:
"""Load datasource document from data_loader."""
docs = []
if self._connector.is_graph_type():
db_summary = _parse_gdb_summary(self._connector, self._summary_template)
for table_summary in db_summary:
metadata = {"source": "database"}
docs.append(Document(content=table_summary, metadata=metadata))
else:
db_summary_with_metadata = _parse_db_summary_with_metadata(
self._connector,
self._summary_template,
self._separator,
self._model_dimension,
)
for summary, table_metadata in db_summary_with_metadata:
metadata = {"source": "database"}
if self._metadata:
metadata.update(self._metadata) # type: ignore
table_metadata.update(metadata)
docs.append(Document(content=summary, metadata=table_metadata))
return docs
@classmethod
def support_chunk_strategy(cls) -> List[ChunkStrategy]:
"""Return support chunk strategy."""
return [
ChunkStrategy.CHUNK_BY_SIZE,
ChunkStrategy.CHUNK_BY_SEPARATOR,
ChunkStrategy.CHUNK_BY_PAGE,
]
@classmethod
def type(cls) -> KnowledgeType:
"""Knowledge type of Datasource."""
return KnowledgeType.DOCUMENT
@classmethod
def document_type(cls) -> DocumentType:
"""Return document type."""
return DocumentType.DATASOURCE
@classmethod
def default_chunk_strategy(cls) -> ChunkStrategy:
"""Return default chunk strategy.
Returns:
ChunkStrategy: default chunk strategy
"""
return ChunkStrategy.CHUNK_BY_PAGE