DB-GPT/examples/rag/bm25_retriever_example.py
2025-03-17 14:15:21 +08:00

50 lines
1.4 KiB
Python

import asyncio
import os
from dbgpt.configs.model_config import ROOT_PATH
from dbgpt_ext.rag import ChunkParameters
from dbgpt_ext.rag.assembler.bm25 import BM25Assembler
from dbgpt_ext.rag.knowledge import KnowledgeFactory
from dbgpt_ext.storage.vector_store.elastic_store import ElasticsearchStoreConfig
"""Embedding rag example.
pre-requirements:
set your elasticsearch config in your example code.
Examples:
..code-block:: shell
python examples/rag/bm25_retriever_example.py
"""
def _create_es_config():
"""Create vector connector."""
return ElasticsearchStoreConfig(
uri="localhost",
port="9200",
user="elastic",
password="dbgpt",
)
async def main():
file_path = os.path.join(ROOT_PATH, "docs/docs/awel/awel.md")
knowledge = KnowledgeFactory.from_file_path(file_path)
es_config = _create_es_config()
chunk_parameters = ChunkParameters(chunk_strategy="CHUNK_BY_SIZE")
# create bm25 assembler
assembler = BM25Assembler.load_from_knowledge(
knowledge=knowledge,
es_config=es_config,
chunk_parameters=chunk_parameters,
)
assembler.persist()
# get bm25 retriever
retriever = assembler.as_retriever(3)
chunks = retriever.retrieve_with_scores("what is awel talk about", 0.3)
print(f"bm25 rag example results:{chunks}")
if __name__ == "__main__":
asyncio.run(main())