DB-GPT/examples/agents/react_agent_example.py
Cooper 81f4c6a558
feat(agents): add ReActAgent (#2420)
Co-authored-by: dongzhancai1 <dongzhancai1@jd.com>
2025-03-09 20:23:31 +08:00

90 lines
2.6 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import asyncio
import logging
import os
import sys
from typing_extensions import Annotated, Doc
from dbgpt.agent import AgentContext, AgentMemory, LLMConfig, UserProxyAgent
from dbgpt.agent.expand.react_agent import ReActAgent
from dbgpt.agent.resource import ToolPack, tool
logging.basicConfig(
stream=sys.stdout,
level=logging.INFO,
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
)
@tool
def terminate(
final_answer: Annotated[str, Doc("final literal answer about the goal")],
) -> str:
"""When the goal achieved, this tool must be called."""
return final_answer
@tool
def simple_calculator(first_number: int, second_number: int, operator: str) -> float:
"""Simple calculator tool. Just support +, -, *, /."""
if isinstance(first_number, str):
first_number = int(first_number)
if isinstance(second_number, str):
second_number = int(second_number)
if operator == "+":
return first_number + second_number
elif operator == "-":
return first_number - second_number
elif operator == "*":
return first_number * second_number
elif operator == "/":
return first_number / second_number
else:
raise ValueError(f"Invalid operator: {operator}")
@tool
def count_directory_files(path: Annotated[str, Doc("The directory path")]) -> int:
"""Count the number of files in a directory."""
if not os.path.isdir(path):
raise ValueError(f"Invalid directory path: {path}")
return len(os.listdir(path))
async def main():
from dbgpt.model.proxy.llms.siliconflow import SiliconFlowLLMClient
llm_client = SiliconFlowLLMClient(
model_alias="Qwen/Qwen2-7B-Instruct",
)
agent_memory = AgentMemory()
agent_memory.gpts_memory.init(conv_id="test456")
context: AgentContext = AgentContext(conv_id="test456", gpts_app_name="ReAct")
tools = ToolPack([simple_calculator, count_directory_files, terminate])
user_proxy = await UserProxyAgent().bind(agent_memory).bind(context).build()
tool_engineer = (
await ReActAgent(end_action_name="terminate", max_steps=10)
.bind(context)
.bind(LLMConfig(llm_client=llm_client))
.bind(agent_memory)
.bind(tools)
.build()
)
await user_proxy.initiate_chat(
recipient=tool_engineer,
reviewer=user_proxy,
message="Calculate the product of 10 and 99, Count the number of files in /tmp answer in Chinese.",
)
# dbgpt-vis message infos
print(await agent_memory.gpts_memory.app_link_chat_message("test456"))
if __name__ == "__main__":
asyncio.run(main())