DB-GPT/examples/rag/cross_encoder_rerank_example.py
2025-03-17 14:15:21 +08:00

71 lines
2.5 KiB
Python

"""This example demonstrates how to use the cross-encoder reranker
to rerank the retrieved chunks.
The cross-encoder reranker is a neural network model that takes a query
and a chunk as input and outputs a score that represents the relevance of the chunk
to the query.
Download pretrained cross-encoder models can be found at https://huggingface.co/models.
Example:
python examples/rag/cross_encoder_rerank_example.py
"""
import asyncio
import os
from dbgpt.configs.model_config import MODEL_PATH, PILOT_PATH, ROOT_PATH
from dbgpt.rag.embedding import DefaultEmbeddingFactory
from dbgpt.rag.retriever.rerank import CrossEncoderRanker
from dbgpt_ext.rag import ChunkParameters
from dbgpt_ext.rag.assembler import EmbeddingAssembler
from dbgpt_ext.rag.knowledge import KnowledgeFactory
from dbgpt_ext.storage.vector_store.chroma_store import ChromaStore, ChromaVectorConfig
def _create_vector_connector():
"""Create vector connector."""
config = ChromaVectorConfig(
persist_path=PILOT_PATH,
)
return ChromaStore(
config,
name="embedding_rag_test",
embedding_fn=DefaultEmbeddingFactory(
default_model_name=os.path.join(MODEL_PATH, "text2vec-large-chinese"),
).create(),
)
async def main():
file_path = os.path.join(ROOT_PATH, "docs/docs/awel/awel.md")
knowledge = KnowledgeFactory.from_file_path(file_path)
vector_connector = _create_vector_connector()
chunk_parameters = ChunkParameters(chunk_strategy="CHUNK_BY_MARKDOWN_HEADER")
# get embedding assembler
assembler = EmbeddingAssembler.load_from_knowledge(
knowledge=knowledge,
chunk_parameters=chunk_parameters,
index_store=vector_connector,
)
assembler.persist()
# get embeddings retriever
retriever = assembler.as_retriever(3)
# create metadata filter
query = "what is awel talk about"
chunks = await retriever.aretrieve_with_scores(query, 0.3)
print("before rerank results:\n")
for i, chunk in enumerate(chunks):
print(f"----{i + 1}.chunk content:{chunk.content}\n score:{chunk.score}")
# cross-encoder rerankpython
cross_encoder_model = os.path.join(MODEL_PATH, "bge-reranker-base")
rerank = CrossEncoderRanker(topk=3, model=cross_encoder_model)
new_chunks = rerank.rank(chunks, query=query)
print("after cross-encoder rerank results:\n")
for i, chunk in enumerate(new_chunks):
print(f"----{i + 1}.chunk content:{chunk.content}\n score:{chunk.score}")
if __name__ == "__main__":
asyncio.run(main())