Files
DB-GPT/pilot/source_embedding/source_embedding.py
2023-05-11 16:06:18 +08:00

71 lines
2.1 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
from abc import ABC, abstractmethod
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from typing import List
registered_methods = []
def register(method):
registered_methods.append(method.__name__)
return method
class SourceEmbedding(ABC):
"""base class for read data source embedding pipeline.
include data read, data process, data split, data to vector, data index vector store
Implementations should implement the method
"""
def __init__(self, yuque_path, model_name, vector_store_config):
"""Initialize with YuqueLoader url, model_name, vector_store_config"""
self.yuque_path = yuque_path
self.model_name = model_name
self.vector_store_config = vector_store_config
@abstractmethod
@register
def read(self) -> List[ABC]:
"""read datasource into document objects."""
@register
def data_process(self, text):
"""pre process data."""
@register
def text_split(self, text):
"""text split chunk"""
pass
@register
def text_to_vector(self, docs):
"""transform vector"""
pass
@register
def index_to_store(self, docs):
"""index to vector store"""
embeddings = HuggingFaceEmbeddings(model_name=self.model_name)
persist_dir = os.path.join(self.vector_store_config["vector_store_path"],
self.vector_store_config["vector_store_name"] + ".vectordb")
vector_store = Chroma.from_documents(docs, embeddings, persist_directory=persist_dir)
vector_store.persist()
def source_embedding(self):
if 'read' in registered_methods:
text = self.read()
if 'data_process' in registered_methods:
text = self.data_process(text)
if 'text_split' in registered_methods:
self.text_split(text)
if 'text_to_vector' in registered_methods:
self.text_to_vector(text)
if 'index_to_store' in registered_methods:
self.index_to_store(text)