Files
DB-GPT/dbgpt/model/utils/chatgpt_utils.py

283 lines
9.5 KiB
Python

from __future__ import annotations
import os
import logging
from dataclasses import dataclass
import importlib.metadata as metadata
from typing import List, Dict, Any, Optional, TYPE_CHECKING, Union, AsyncIterator
from dbgpt.core.interface.llm import ModelMetadata, LLMClient
from dbgpt.core.interface.llm import ModelOutput, ModelRequest
if TYPE_CHECKING:
import httpx
from httpx._types import ProxiesTypes
from openai import AsyncAzureOpenAI
from openai import AsyncOpenAI
ClientType = Union[AsyncAzureOpenAI, AsyncOpenAI]
logger = logging.getLogger(__name__)
@dataclass
class OpenAIParameters:
"""A class to represent a LLM model."""
api_type: str = "open_ai"
api_base: Optional[str] = None
api_key: Optional[str] = None
api_version: Optional[str] = None
full_url: Optional[str] = None
proxies: Optional["ProxiesTypes"] = None
def _initialize_openai_v1(init_params: OpenAIParameters):
try:
from openai import OpenAI
except ImportError as exc:
raise ValueError(
"Could not import python package: openai "
"Please install openai by command `pip install openai"
) from exc
if not metadata.version("openai") >= "1.0.0":
raise ImportError("Please upgrade openai package to version 1.0.0 or above")
api_type: Optional[str] = init_params.api_type
api_base: Optional[str] = init_params.api_base
api_key: Optional[str] = init_params.api_key
api_version: Optional[str] = init_params.api_version
full_url: Optional[str] = init_params.full_url
api_type = api_type or os.getenv("OPENAI_API_TYPE", "open_ai")
base_url = api_base or os.getenv(
"OPENAI_API_BASE",
os.getenv("AZURE_OPENAI_ENDPOINT") if api_type == "azure" else None,
)
api_key = api_key or os.getenv(
"OPENAI_API_KEY",
os.getenv("AZURE_OPENAI_KEY") if api_type == "azure" else None,
)
api_version = api_version or os.getenv("OPENAI_API_VERSION")
if not base_url and full_url:
base_url = full_url.split("/chat/completions")[0]
if api_key is None:
raise ValueError("api_key is required, please set OPENAI_API_KEY environment")
if base_url is None:
raise ValueError("base_url is required, please set OPENAI_BASE_URL environment")
if base_url.endswith("/"):
base_url = base_url[:-1]
openai_params = {
"api_key": api_key,
"base_url": base_url,
}
return openai_params, api_type, api_version
def _build_openai_client(init_params: OpenAIParameters):
import httpx
openai_params, api_type, api_version = _initialize_openai_v1(init_params)
if api_type == "azure":
from openai import AsyncAzureOpenAI
return AsyncAzureOpenAI(
api_key=openai_params["api_key"],
api_version=api_version,
azure_endpoint=openai_params["base_url"],
http_client=httpx.AsyncClient(proxies=init_params.proxies),
)
else:
from openai import AsyncOpenAI
return AsyncOpenAI(
**openai_params, http_client=httpx.AsyncClient(proxies=init_params.proxies)
)
class OpenAILLMClient(LLMClient):
"""An implementation of LLMClient using OpenAI API.
In order to have as few dependencies as possible, we directly use the http API.
"""
def __init__(
self,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
api_type: Optional[str] = None,
api_version: Optional[str] = None,
model: Optional[str] = "gpt-3.5-turbo",
proxies: Optional["ProxiesTypes"] = None,
timeout: Optional[int] = 240,
model_alias: Optional[str] = "chatgpt_proxyllm",
context_length: Optional[int] = 8192,
openai_client: Optional["ClientType"] = None,
openai_kwargs: Optional[Dict[str, Any]] = None,
):
self._init_params = OpenAIParameters(
api_type=api_type,
api_base=api_base,
api_key=api_key,
api_version=api_version,
proxies=proxies,
)
self._model = model
self._proxies = proxies
self._timeout = timeout
self._model_alias = model_alias
self._context_length = context_length
self._client = openai_client
self._openai_kwargs = openai_kwargs or {}
@property
def client(self) -> ClientType:
if self._client is None:
self._client = _build_openai_client(init_params=self._init_params)
return self._client
def _build_request(
self, request: ModelRequest, stream: Optional[bool] = False
) -> Dict[str, Any]:
payload = {"model": request.model or self._model, "stream": stream}
# Apply openai kwargs
for k, v in self._openai_kwargs.items():
payload[k] = v
if request.temperature:
payload["temperature"] = request.temperature
if request.max_new_tokens:
payload["max_tokens"] = request.max_new_tokens
return payload
async def generate(self, request: ModelRequest) -> ModelOutput:
messages = request.to_openai_messages()
payload = self._build_request(request)
try:
chat_completion = await self.client.chat.completions.create(
messages=messages, **payload
)
text = chat_completion.choices[0].message.content
usage = chat_completion.usage.dict()
return ModelOutput(text=text, error_code=0, usage=usage)
except Exception as e:
return ModelOutput(
text=f"**LLMServer Generate Error, Please CheckErrorInfo.**: {e}",
error_code=1,
)
async def generate_stream(
self, request: ModelRequest
) -> AsyncIterator[ModelOutput]:
messages = request.to_openai_messages()
payload = self._build_request(request)
try:
chat_completion = await self.client.chat.completions.create(
messages=messages, **payload
)
text = ""
for r in chat_completion:
if len(r.choices) == 0:
continue
if r.choices[0].delta.content is not None:
content = r.choices[0].delta.content
text += content
yield ModelOutput(text=text, error_code=0)
except Exception as e:
yield ModelOutput(
text=f"**LLMServer Generate Error, Please CheckErrorInfo.**: {e}",
error_code=1,
)
async def models(self) -> List[ModelMetadata]:
model_metadata = ModelMetadata(
model=self._model_alias,
context_length=await self.get_context_length(),
)
return [model_metadata]
async def get_context_length(self) -> int:
"""Get the context length of the model.
Returns:
int: The context length.
# TODO: This is a temporary solution. We should have a better way to get the context length.
eg. get real context length from the openai api.
"""
return self._context_length
async def count_token(self, model: str, prompt: str) -> int:
"""Count the number of tokens in a given prompt.
TODO: Get the real number of tokens from the openai api or tiktoken package
"""
raise NotImplementedError()
async def _to_openai_stream(
model: str, output_iter: AsyncIterator[ModelOutput]
) -> AsyncIterator[str]:
"""Convert the output_iter to openai stream format.
Args:
model (str): The model name.
output_iter (AsyncIterator[ModelOutput]): The output iterator.
"""
import json
import shortuuid
from fastchat.protocol.openai_api_protocol import (
ChatCompletionResponseStreamChoice,
ChatCompletionStreamResponse,
DeltaMessage,
)
id = f"chatcmpl-{shortuuid.random()}"
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role="assistant"),
finish_reason=None,
)
chunk = ChatCompletionStreamResponse(id=id, choices=[choice_data], model=model)
yield f"data: {chunk.json(exclude_unset=True, ensure_ascii=False)}\n\n"
previous_text = ""
finish_stream_events = []
async for model_output in output_iter:
model_output: ModelOutput = model_output
if model_output.error_code != 0:
yield f"data: {json.dumps(model_output.to_dict(), ensure_ascii=False)}\n\n"
yield "data: [DONE]\n\n"
return
decoded_unicode = model_output.text.replace("\ufffd", "")
delta_text = decoded_unicode[len(previous_text) :]
previous_text = (
decoded_unicode
if len(decoded_unicode) > len(previous_text)
else previous_text
)
if len(delta_text) == 0:
delta_text = None
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(content=delta_text),
finish_reason=model_output.finish_reason,
)
chunk = ChatCompletionStreamResponse(id=id, choices=[choice_data], model=model)
if delta_text is None:
if model_output.finish_reason is not None:
finish_stream_events.append(chunk)
continue
yield f"data: {chunk.json(exclude_unset=True, ensure_ascii=False)}\n\n"
for finish_chunk in finish_stream_events:
yield f"data: {finish_chunk.json(exclude_none=True, ensure_ascii=False)}\n\n"
yield "data: [DONE]\n\n"