Files
DB-GPT/dbgpt/model/cluster/client.py
2024-01-14 21:01:37 +08:00

73 lines
2.6 KiB
Python

import asyncio
from typing import AsyncIterator, List, Optional
from dbgpt.core.interface.llm import (
DefaultMessageConverter,
LLMClient,
MessageConverter,
ModelMetadata,
ModelOutput,
ModelRequest,
)
from dbgpt.model.cluster.manager_base import WorkerManager
from dbgpt.model.parameter import WorkerType
class DefaultLLMClient(LLMClient):
"""Default LLM client implementation.
Connect to the worker manager and send the request to the worker manager.
Args:
worker_manager (WorkerManager): worker manager instance.
auto_convert_message (bool, optional): auto convert the message to ModelRequest. Defaults to False.
"""
def __init__(
self, worker_manager: WorkerManager, auto_convert_message: bool = False
):
self._worker_manager = worker_manager
self._auto_covert_message = auto_convert_message
async def generate(
self,
request: ModelRequest,
message_converter: Optional[MessageConverter] = None,
) -> ModelOutput:
if not message_converter and self._auto_covert_message:
message_converter = DefaultMessageConverter()
request = await self.covert_message(request, message_converter)
return await self._worker_manager.generate(request.to_dict())
async def generate_stream(
self,
request: ModelRequest,
message_converter: Optional[MessageConverter] = None,
) -> AsyncIterator[ModelOutput]:
if not message_converter and self._auto_covert_message:
message_converter = DefaultMessageConverter()
request = await self.covert_message(request, message_converter)
async for output in self._worker_manager.generate_stream(request.to_dict()):
yield output
async def models(self) -> List[ModelMetadata]:
instances = await self._worker_manager.get_all_model_instances(
WorkerType.LLM.value, healthy_only=True
)
query_metadata_task = []
for instance in instances:
worker_name, _ = WorkerType.parse_worker_key(instance.worker_key)
query_metadata_task.append(
self._worker_manager.get_model_metadata({"model": worker_name})
)
models: List[ModelMetadata] = await asyncio.gather(*query_metadata_task)
model_map = {}
for single_model in models:
model_map[single_model.model] = single_model
return [model_map[model_name] for model_name in sorted(model_map.keys())]
async def count_token(self, model: str, prompt: str) -> int:
return await self._worker_manager.count_token(
{"model": model, "prompt": prompt}
)