Files
DB-GPT/pilot/source_embedding/source_embedding.py
2023-05-18 20:03:24 +08:00

91 lines
3.1 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
from abc import ABC, abstractmethod
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from typing import List, Optional, Dict
registered_methods = []
def register(method):
registered_methods.append(method.__name__)
return method
class SourceEmbedding(ABC):
"""base class for read data source embedding pipeline.
include data read, data process, data split, data to vector, data index vector store
Implementations should implement the method
"""
def __init__(self, file_path, model_name, vector_store_config, embedding_args: Optional[Dict] = None):
"""Initialize with Loader url, model_name, vector_store_config"""
self.file_path = file_path
self.model_name = model_name
self.vector_store_config = vector_store_config
self.embedding_args = embedding_args
self.embeddings = HuggingFaceEmbeddings(model_name=self.model_name)
persist_dir = os.path.join(self.vector_store_config["vector_store_path"],
self.vector_store_config["vector_store_name"] + ".vectordb")
self.vector_store_client = Chroma(persist_directory=persist_dir, embedding_function=self.embeddings)
@abstractmethod
@register
def read(self) -> List[ABC]:
"""read datasource into document objects."""
@register
def data_process(self, text):
"""pre process data."""
@register
def text_split(self, text):
"""text split chunk"""
pass
@register
def text_to_vector(self, docs):
"""transform vector"""
pass
@register
def index_to_store(self, docs):
"""index to vector store"""
persist_dir = os.path.join(self.vector_store_config["vector_store_path"],
self.vector_store_config["vector_store_name"] + ".vectordb")
self.vector_store = Chroma.from_documents(docs, self.embeddings, persist_directory=persist_dir)
self.vector_store.persist()
@register
def similar_search(self, doc, topk):
"""vector store similarity_search"""
return self.vector_store_client.similarity_search(doc, topk)
def source_embedding(self):
if 'read' in registered_methods:
text = self.read()
if 'data_process' in registered_methods:
text = self.data_process(text)
if 'text_split' in registered_methods:
self.text_split(text)
if 'text_to_vector' in registered_methods:
self.text_to_vector(text)
if 'index_to_store' in registered_methods:
self.index_to_store(text)
def batch_embedding(self):
if 'read_batch' in registered_methods:
text = self.read_batch()
if 'data_process' in registered_methods:
text = self.data_process(text)
if 'text_split' in registered_methods:
self.text_split(text)
if 'text_to_vector' in registered_methods:
self.text_to_vector(text)
if 'index_to_store' in registered_methods:
self.index_to_store(text)