mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-10-22 17:39:02 +00:00
377 lines
14 KiB
Python
377 lines
14 KiB
Python
import logging
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
from typing import List
|
|
|
|
from fastapi import APIRouter, Depends, File, Form, UploadFile
|
|
|
|
from dbgpt._private.config import Config
|
|
from dbgpt.app.knowledge.request.request import (
|
|
ChunkQueryRequest,
|
|
DocumentQueryRequest,
|
|
DocumentSummaryRequest,
|
|
DocumentSyncRequest,
|
|
EntityExtractRequest,
|
|
GraphVisRequest,
|
|
KnowledgeDocumentRequest,
|
|
KnowledgeQueryRequest,
|
|
KnowledgeSpaceRequest,
|
|
SpaceArgumentRequest,
|
|
)
|
|
from dbgpt.app.knowledge.request.response import KnowledgeQueryResponse
|
|
from dbgpt.app.knowledge.service import KnowledgeService
|
|
from dbgpt.app.openapi.api_v1.api_v1 import no_stream_generator, stream_generator
|
|
from dbgpt.app.openapi.api_view_model import Result
|
|
from dbgpt.configs.model_config import (
|
|
EMBEDDING_MODEL_CONFIG,
|
|
KNOWLEDGE_UPLOAD_ROOT_PATH,
|
|
)
|
|
from dbgpt.rag import ChunkParameters
|
|
from dbgpt.rag.embedding.embedding_factory import EmbeddingFactory
|
|
from dbgpt.rag.knowledge.base import ChunkStrategy
|
|
from dbgpt.rag.knowledge.factory import KnowledgeFactory
|
|
from dbgpt.rag.retriever.embedding import EmbeddingRetriever
|
|
from dbgpt.serve.rag.api.schemas import KnowledgeSyncRequest
|
|
from dbgpt.serve.rag.connector import VectorStoreConnector
|
|
from dbgpt.serve.rag.service.service import Service
|
|
from dbgpt.storage.vector_store.base import VectorStoreConfig
|
|
from dbgpt.util.tracer import SpanType, root_tracer
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
CFG = Config()
|
|
router = APIRouter()
|
|
|
|
|
|
knowledge_space_service = KnowledgeService()
|
|
|
|
|
|
def get_rag_service() -> Service:
|
|
"""Get Rag Service."""
|
|
return Service.get_instance(CFG.SYSTEM_APP)
|
|
|
|
|
|
@router.post("/knowledge/space/add")
|
|
def space_add(request: KnowledgeSpaceRequest):
|
|
print(f"/space/add params: {request}")
|
|
try:
|
|
knowledge_space_service.create_knowledge_space(request)
|
|
return Result.succ([])
|
|
except Exception as e:
|
|
return Result.failed(code="E000X", msg=f"space add error {e}")
|
|
|
|
|
|
@router.post("/knowledge/space/list")
|
|
def space_list(request: KnowledgeSpaceRequest):
|
|
print(f"/space/list params:")
|
|
try:
|
|
return Result.succ(knowledge_space_service.get_knowledge_space(request))
|
|
except Exception as e:
|
|
return Result.failed(code="E000X", msg=f"space list error {e}")
|
|
|
|
|
|
@router.post("/knowledge/space/delete")
|
|
def space_delete(request: KnowledgeSpaceRequest):
|
|
print(f"/space/delete params:")
|
|
try:
|
|
return Result.succ(knowledge_space_service.delete_space(request.name))
|
|
except Exception as e:
|
|
return Result.failed(code="E000X", msg=f"space delete error {e}")
|
|
|
|
|
|
@router.post("/knowledge/{space_name}/arguments")
|
|
def arguments(space_name: str):
|
|
print(f"/knowledge/space/arguments params:")
|
|
try:
|
|
return Result.succ(knowledge_space_service.arguments(space_name))
|
|
except Exception as e:
|
|
return Result.failed(code="E000X", msg=f"space arguments error {e}")
|
|
|
|
|
|
@router.post("/knowledge/{space_name}/argument/save")
|
|
def arguments_save(space_name: str, argument_request: SpaceArgumentRequest):
|
|
print(f"/knowledge/space/argument/save params:")
|
|
try:
|
|
return Result.succ(
|
|
knowledge_space_service.argument_save(space_name, argument_request)
|
|
)
|
|
except Exception as e:
|
|
return Result.failed(code="E000X", msg=f"space save error {e}")
|
|
|
|
|
|
@router.post("/knowledge/{space_name}/document/add")
|
|
def document_add(space_name: str, request: KnowledgeDocumentRequest):
|
|
print(f"/document/add params: {space_name}, {request}")
|
|
try:
|
|
return Result.succ(
|
|
knowledge_space_service.create_knowledge_document(
|
|
space=space_name, request=request
|
|
)
|
|
)
|
|
# return Result.succ([])
|
|
except Exception as e:
|
|
return Result.failed(code="E000X", msg=f"document add error {e}")
|
|
|
|
|
|
@router.get("/knowledge/document/chunkstrategies")
|
|
def chunk_strategies():
|
|
"""Get chunk strategies"""
|
|
print(f"/document/chunkstrategies:")
|
|
try:
|
|
return Result.succ(
|
|
[
|
|
{
|
|
"strategy": strategy.name,
|
|
"name": strategy.value[2],
|
|
"description": strategy.value[3],
|
|
"parameters": strategy.value[1],
|
|
"suffix": [
|
|
knowledge.document_type().value
|
|
for knowledge in KnowledgeFactory.subclasses()
|
|
if strategy in knowledge.support_chunk_strategy()
|
|
and knowledge.document_type() is not None
|
|
],
|
|
"type": set(
|
|
[
|
|
knowledge.type().value
|
|
for knowledge in KnowledgeFactory.subclasses()
|
|
if strategy in knowledge.support_chunk_strategy()
|
|
]
|
|
),
|
|
}
|
|
for strategy in ChunkStrategy
|
|
]
|
|
)
|
|
except Exception as e:
|
|
return Result.failed(code="E000X", msg=f"chunk strategies error {e}")
|
|
|
|
|
|
@router.post("/knowledge/{space_name}/document/list")
|
|
def document_list(space_name: str, query_request: DocumentQueryRequest):
|
|
print(f"/document/list params: {space_name}, {query_request}")
|
|
try:
|
|
return Result.succ(
|
|
knowledge_space_service.get_knowledge_documents(space_name, query_request)
|
|
)
|
|
except Exception as e:
|
|
return Result.failed(code="E000X", msg=f"document list error {e}")
|
|
|
|
|
|
@router.post("/knowledge/{space_name}/graphvis")
|
|
def graph_vis(space_name: str, query_request: GraphVisRequest):
|
|
print(f"/document/list params: {space_name}, {query_request}")
|
|
print(query_request.limit)
|
|
try:
|
|
return Result.succ(
|
|
knowledge_space_service.query_graph(
|
|
space_name=space_name, limit=query_request.limit
|
|
)
|
|
)
|
|
except Exception as e:
|
|
return Result.failed(code="E000X", msg=f"get graph vis error {e}")
|
|
|
|
|
|
@router.post("/knowledge/{space_name}/document/delete")
|
|
def document_delete(space_name: str, query_request: DocumentQueryRequest):
|
|
print(f"/document/list params: {space_name}, {query_request}")
|
|
try:
|
|
return Result.succ(
|
|
knowledge_space_service.delete_document(space_name, query_request.doc_name)
|
|
)
|
|
except Exception as e:
|
|
return Result.failed(code="E000X", msg=f"document delete error {e}")
|
|
|
|
|
|
@router.post("/knowledge/{space_name}/document/upload")
|
|
async def document_upload(
|
|
space_name: str,
|
|
doc_name: str = Form(...),
|
|
doc_type: str = Form(...),
|
|
doc_file: UploadFile = File(...),
|
|
):
|
|
print(f"/document/upload params: {space_name}")
|
|
try:
|
|
if doc_file:
|
|
if not os.path.exists(os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, space_name)):
|
|
os.makedirs(os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, space_name))
|
|
# We can not move temp file in windows system when we open file in context of `with`
|
|
tmp_fd, tmp_path = tempfile.mkstemp(
|
|
dir=os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, space_name)
|
|
)
|
|
with os.fdopen(tmp_fd, "wb") as tmp:
|
|
tmp.write(await doc_file.read())
|
|
shutil.move(
|
|
tmp_path,
|
|
os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, space_name, doc_file.filename),
|
|
)
|
|
request = KnowledgeDocumentRequest()
|
|
request.doc_name = doc_name
|
|
request.doc_type = doc_type
|
|
request.content = os.path.join(
|
|
KNOWLEDGE_UPLOAD_ROOT_PATH, space_name, doc_file.filename
|
|
)
|
|
space_res = knowledge_space_service.get_knowledge_space(
|
|
KnowledgeSpaceRequest(name=space_name)
|
|
)
|
|
if len(space_res) == 0:
|
|
# create default space
|
|
if "default" != space_name:
|
|
raise Exception(f"you have not create your knowledge space.")
|
|
knowledge_space_service.create_knowledge_space(
|
|
KnowledgeSpaceRequest(
|
|
name=space_name,
|
|
desc="first db-gpt rag application",
|
|
owner="dbgpt",
|
|
)
|
|
)
|
|
return Result.succ(
|
|
knowledge_space_service.create_knowledge_document(
|
|
space=space_name, request=request
|
|
)
|
|
)
|
|
return Result.failed(code="E000X", msg=f"doc_file is None")
|
|
except Exception as e:
|
|
return Result.failed(code="E000X", msg=f"document add error {e}")
|
|
|
|
|
|
@router.post("/knowledge/{space_name}/document/sync")
|
|
async def document_sync(
|
|
space_name: str,
|
|
request: DocumentSyncRequest,
|
|
service: Service = Depends(get_rag_service),
|
|
):
|
|
logger.info(f"Received params: {space_name}, {request}")
|
|
try:
|
|
space = service.get({"name": space_name})
|
|
if space is None:
|
|
return Result.failed(code="E000X", msg=f"space {space_name} not exist")
|
|
if request.doc_ids is None or len(request.doc_ids) == 0:
|
|
return Result.failed(code="E000X", msg="doc_ids is None")
|
|
sync_request = KnowledgeSyncRequest(
|
|
doc_id=request.doc_ids[0],
|
|
space_id=str(space.id),
|
|
model_name=request.model_name,
|
|
)
|
|
sync_request.chunk_parameters = ChunkParameters(
|
|
chunk_strategy="Automatic",
|
|
chunk_size=request.chunk_size or 512,
|
|
chunk_overlap=request.chunk_overlap or 50,
|
|
)
|
|
doc_ids = await service.sync_document(requests=[sync_request])
|
|
return Result.succ(doc_ids)
|
|
except Exception as e:
|
|
return Result.failed(code="E000X", msg=f"document sync error {e}")
|
|
|
|
|
|
@router.post("/knowledge/{space_name}/document/sync_batch")
|
|
async def batch_document_sync(
|
|
space_name: str,
|
|
request: List[KnowledgeSyncRequest],
|
|
service: Service = Depends(get_rag_service),
|
|
):
|
|
logger.info(f"Received params: {space_name}, {request}")
|
|
try:
|
|
space = service.get({"name": space_name})
|
|
for sync_request in request:
|
|
sync_request.space_id = space.id
|
|
doc_ids = await service.sync_document(requests=request)
|
|
# doc_ids = service.sync_document(
|
|
# space_name=space_name, sync_requests=request
|
|
# )
|
|
return Result.succ({"tasks": doc_ids})
|
|
except Exception as e:
|
|
return Result.failed(code="E000X", msg=f"document sync batch error {e}")
|
|
|
|
|
|
@router.post("/knowledge/{space_name}/chunk/list")
|
|
def document_list(space_name: str, query_request: ChunkQueryRequest):
|
|
print(f"/document/list params: {space_name}, {query_request}")
|
|
try:
|
|
return Result.succ(knowledge_space_service.get_document_chunks(query_request))
|
|
except Exception as e:
|
|
return Result.failed(code="E000X", msg=f"document chunk list error {e}")
|
|
|
|
|
|
@router.post("/knowledge/{vector_name}/query")
|
|
def similar_query(space_name: str, query_request: KnowledgeQueryRequest):
|
|
print(f"Received params: {space_name}, {query_request}")
|
|
embedding_factory = CFG.SYSTEM_APP.get_component(
|
|
"embedding_factory", EmbeddingFactory
|
|
)
|
|
config = VectorStoreConfig(
|
|
name=space_name,
|
|
embedding_fn=embedding_factory.create(
|
|
EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL]
|
|
),
|
|
)
|
|
vector_store_connector = VectorStoreConnector(
|
|
vector_store_type=CFG.VECTOR_STORE_TYPE,
|
|
vector_store_config=config,
|
|
)
|
|
retriever = EmbeddingRetriever(
|
|
top_k=query_request.top_k, index_store=vector_store_connector.index_client
|
|
)
|
|
chunks = retriever.retrieve(query_request.query)
|
|
res = [
|
|
KnowledgeQueryResponse(text=d.content, source=d.metadata["source"])
|
|
for d in chunks
|
|
]
|
|
return {"response": res}
|
|
|
|
|
|
@router.post("/knowledge/document/summary")
|
|
async def document_summary(request: DocumentSummaryRequest):
|
|
print(f"/document/summary params: {request}")
|
|
try:
|
|
with root_tracer.start_span(
|
|
"get_chat_instance", span_type=SpanType.CHAT, metadata=request
|
|
):
|
|
chat = await knowledge_space_service.document_summary(request=request)
|
|
headers = {
|
|
"Content-Type": "text/event-stream",
|
|
"Cache-Control": "no-cache",
|
|
"Connection": "keep-alive",
|
|
"Transfer-Encoding": "chunked",
|
|
}
|
|
from starlette.responses import StreamingResponse
|
|
|
|
if not chat.prompt_template.stream_out:
|
|
return StreamingResponse(
|
|
no_stream_generator(chat),
|
|
headers=headers,
|
|
media_type="text/event-stream",
|
|
)
|
|
else:
|
|
return StreamingResponse(
|
|
stream_generator(chat, False, request.model_name),
|
|
headers=headers,
|
|
media_type="text/plain",
|
|
)
|
|
except Exception as e:
|
|
return Result.failed(code="E000X", msg=f"document summary error {e}")
|
|
|
|
|
|
@router.post("/knowledge/entity/extract")
|
|
async def entity_extract(request: EntityExtractRequest):
|
|
logger.info(f"Received params: {request}")
|
|
try:
|
|
import uuid
|
|
|
|
from dbgpt.app.scene import ChatScene
|
|
from dbgpt.util.chat_util import llm_chat_response_nostream
|
|
|
|
chat_param = {
|
|
"chat_session_id": uuid.uuid1(),
|
|
"current_user_input": request.text,
|
|
"select_param": "entity",
|
|
"model_name": request.model_name,
|
|
}
|
|
|
|
res = await llm_chat_response_nostream(
|
|
ChatScene.ExtractEntity.value(), **{"chat_param": chat_param}
|
|
)
|
|
return Result.succ(res)
|
|
except Exception as e:
|
|
return Result.failed(code="E000X", msg=f"entity extract error {e}")
|