Files
DB-GPT/pilot/graph_engine/graph_engine.py
2023-10-13 17:13:51 +08:00

138 lines
5.2 KiB
Python

import logging
from typing import Any, Optional, Callable, Tuple, List
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from pilot.embedding_engine import KnowledgeType
from pilot.embedding_engine.knowledge_type import get_knowledge_embedding
from pilot.graph_engine.index_struct import KG
from pilot.graph_engine.node import TextNode
from pilot.utils import utils
logger = logging.getLogger(__name__)
class RAGGraphEngine:
"""Knowledge RAG Graph Engine.
Build a KG by extracting triplets, and leveraging the KG during query-time.
Args:
knowledge_type (Optional[str]): Default: KnowledgeType.DOCUMENT.value
extracting triplets.
graph_store (Optional[GraphStore]): The graph store to use.refrence:llama-index
include_embeddings (bool): Whether to include embeddings in the index.
Defaults to False.
max_object_length (int): The maximum length of the object in a triplet.
Defaults to 128.
extract_triplet_fn (Optional[Callable]): The function to use for
extracting triplets. Defaults to None.
"""
index_struct_cls = KG
def __init__(
self,
knowledge_type: Optional[str] = KnowledgeType.DOCUMENT.value,
knowledge_source: Optional[str] = None,
text_splitter=None,
graph_store=None,
index_struct: Optional[KG] = None,
model_name: Optional[str] = None,
max_triplets_per_chunk: int = 10,
include_embeddings: bool = False,
max_object_length: int = 128,
extract_triplet_fn: Optional[Callable] = None,
**kwargs: Any,
) -> None:
"""Initialize params."""
# from llama_index.graph_stores import SimpleGraphStore
# from llama_index.graph_stores.types import GraphStore
# need to set parameters before building index in base class.
self.knowledge_source = knowledge_source
self.knowledge_type = knowledge_type
self.model_name = model_name
self.text_splitter = text_splitter
self.index_struct = index_struct
self.include_embeddings = include_embeddings
# self.graph_store = graph_store or SimpleGraphStore()
self.graph_store = graph_store
self.max_triplets_per_chunk = max_triplets_per_chunk
self._max_object_length = max_object_length
self._extract_triplet_fn = extract_triplet_fn
def knowledge_graph(self, docs=None):
"""knowledge docs into graph store"""
if not docs:
if self.text_splitter:
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=2000, chunk_overlap=100
)
knowledge_source = get_knowledge_embedding(
knowledge_type=self.knowledge_type,
knowledge_source=self.knowledge_source,
text_splitter=self.text_splitter,
)
docs = knowledge_source.read()
if self.index_struct is None:
self.index_struct = self._build_index_from_docs(docs)
def _extract_triplets(self, text: str) -> List[Tuple[str, str, str]]:
"""Extract triplets from text by function or llm"""
if self._extract_triplet_fn is not None:
return self._extract_triplet_fn(text)
else:
return self._llm_extract_triplets(text)
def _llm_extract_triplets(self, text: str) -> List[Tuple[str, str, str]]:
"""Extract triplets from text by llm"""
from pilot.scene.base import ChatScene
from pilot.common.chat_util import llm_chat_response_nostream
import uuid
chat_param = {
"chat_session_id": uuid.uuid1(),
"current_user_input": text,
"select_param": "triplet",
"model_name": self.model_name,
}
loop = utils.get_or_create_event_loop()
triplets = loop.run_until_complete(
llm_chat_response_nostream(
ChatScene.ExtractTriplet.value(), **{"chat_param": chat_param}
)
)
return triplets
# response = self._service_context.llm_predictor.predict(
# self.kg_triple_extract_template,
# text=text,
# )
# print(response, flush=True)
# return self._parse_triplet_response(
# response, max_length=self._max_object_length
# )
def _build_index_from_docs(self, documents: List[Document]) -> KG:
"""Build the index from nodes."""
index_struct = self.index_struct_cls()
for doc in documents:
triplets = self._extract_triplets(doc.page_content)
if len(triplets) == 0:
continue
text_node = TextNode(text=doc.page_content, metadata=doc.metadata)
logger.info(f"extracted knowledge triplets: {triplets}")
for triplet in triplets:
subj, _, obj = triplet
self.graph_store.upsert_triplet(*triplet)
index_struct.add_node([subj, obj], text_node)
return index_struct
def search(self, query):
from pilot.graph_engine.graph_search import RAGGraphSearch
graph_search = RAGGraphSearch(graph_engine=self)
return graph_search.search(query)