Files
DB-GPT/pilot/source_embedding/knowledge_embedding.py
2023-05-19 21:17:39 +08:00

116 lines
5.6 KiB
Python
Raw Blame History

import os
from bs4 import BeautifulSoup
from langchain.document_loaders import PyPDFLoader, TextLoader, markdown
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from pilot.configs.model_config import DATASETS_DIR, KNOWLEDGE_CHUNK_SPLIT_SIZE
from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter
from pilot.source_embedding.csv_embedding import CSVEmbedding
from pilot.source_embedding.markdown_embedding import MarkdownEmbedding
from pilot.source_embedding.pdf_embedding import PDFEmbedding
import markdown
from pilot.source_embedding.pdf_loader import UnstructuredPaddlePDFLoader
class KnowledgeEmbedding:
def __init__(self, file_path, model_name, vector_store_config, local_persist=True):
"""Initialize with Loader url, model_name, vector_store_config"""
self.file_path = file_path
self.model_name = model_name
self.vector_store_config = vector_store_config
self.vector_store_type = "default"
self.embeddings = HuggingFaceEmbeddings(model_name=self.model_name)
self.local_persist = local_persist
if not self.local_persist:
self.knowledge_embedding_client = self.init_knowledge_embedding()
def knowledge_embedding(self):
self.knowledge_embedding_client.source_embedding()
def knowledge_embedding_batch(self):
self.knowledge_embedding_client.batch_embedding()
def init_knowledge_embedding(self):
if self.file_path.endswith(".pdf"):
embedding = PDFEmbedding(file_path=self.file_path, model_name=self.model_name,
vector_store_config=self.vector_store_config)
elif self.file_path.endswith(".md"):
embedding = MarkdownEmbedding(file_path=self.file_path, model_name=self.model_name, vector_store_config=self.vector_store_config)
elif self.file_path.endswith(".csv"):
embedding = CSVEmbedding(file_path=self.file_path, model_name=self.model_name,
vector_store_config=self.vector_store_config)
elif self.vector_store_type == "default":
embedding = MarkdownEmbedding(file_path=self.file_path, model_name=self.model_name, vector_store_config=self.vector_store_config)
return embedding
def similar_search(self, text, topk):
return self.knowledge_embedding_client.similar_search(text, topk)
def knowledge_persist_initialization(self, append_mode):
vector_name = self.vector_store_config["vector_store_name"]
persist_dir = os.path.join(self.vector_store_config["vector_store_path"], vector_name + ".vectordb")
print("vector db path: ", persist_dir)
if os.path.exists(persist_dir):
if append_mode:
print("append knowledge return vector store")
new_documents = self._load_knownlege(self.file_path)
vector_store = Chroma.from_documents(documents=new_documents,
embedding=self.embeddings,
persist_directory=persist_dir)
else:
print("directly return vector store")
vector_store = Chroma(persist_directory=persist_dir, embedding_function=self.embeddings)
else:
print(vector_name + " is new vector store, knowledge begin load...")
documents = self._load_knownlege(self.file_path)
vector_store = Chroma.from_documents(documents=documents,
embedding=self.embeddings,
persist_directory=persist_dir)
vector_store.persist()
return vector_store
def _load_knownlege(self, path):
docments = []
for root, _, files in os.walk(path, topdown=False):
for file in files:
filename = os.path.join(root, file)
docs = self._load_file(filename)
new_docs = []
for doc in docs:
doc.metadata = {"source": doc.metadata["source"].replace(DATASETS_DIR, "")}
print("doc is embedding...", doc.metadata)
new_docs.append(doc)
docments += new_docs
return docments
def _load_file(self, filename):
if filename.lower().endswith(".md"):
loader = TextLoader(filename)
text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=KNOWLEDGE_CHUNK_SPLIT_SIZE)
docs = loader.load_and_split(text_splitter)
i = 0
for d in docs:
content = markdown.markdown(d.page_content)
soup = BeautifulSoup(content, 'html.parser')
for tag in soup(['!doctype', 'meta', 'i.fa']):
tag.extract()
docs[i].page_content = soup.get_text()
docs[i].page_content = docs[i].page_content.replace("\n", " ")
i += 1
elif filename.lower().endswith(".pdf"):
loader = UnstructuredPaddlePDFLoader(filename)
textsplitter = CHNDocumentSplitter(pdf=True, sentence_size=KNOWLEDGE_CHUNK_SPLIT_SIZE)
docs = loader.load_and_split(textsplitter)
i = 0
for d in docs:
docs[i].page_content = d.page_content.replace("\n", " ").replace("<EFBFBD>", "")
i += 1
else:
loader = TextLoader(filename)
text_splitor = CHNDocumentSplitter(sentence_size=KNOWLEDGE_CHUNK_SPLIT_SIZE)
docs = loader.load_and_split(text_splitor)
return docs