mirror of
https://github.com/csunny/DB-GPT.git
synced 2026-01-16 07:26:31 +00:00
2.4 KiB
2.4 KiB
Docker Install
Docker (Experimental)
1. Building Docker image
$ bash docker/build_all_images.sh
Review images by listing them:
$ docker images|grep db-gpt
Output should look something like the following:
db-gpt-allinone latest e1ffd20b85ac 45 minutes ago 14.5GB
db-gpt latest e36fb0cca5d9 3 hours ago 14GB
You can pass some parameters to docker/build_all_images.sh.
$ bash docker/build_all_images.sh \
--base-image nvidia/cuda:11.8.0-devel-ubuntu22.04 \
--pip-index-url https://pypi.tuna.tsinghua.edu.cn/simple \
--language zh
You can execute the command bash docker/build_all_images.sh --help to see more usage.
2. Run all in one docker container
Run with local model
$ docker run --gpus "device=0" -d -p 3306:3306 \
-p 5000:5000 \
-e LOCAL_DB_HOST=127.0.0.1 \
-e LOCAL_DB_PASSWORD=aa123456 \
-e MYSQL_ROOT_PASSWORD=aa123456 \
-e LLM_MODEL=vicuna-13b \
-e LANGUAGE=zh \
-v /data/models:/app/models \
--name db-gpt-allinone \
db-gpt-allinone
Open http://localhost:5000 with your browser to see the product.
-e LLM_MODEL=vicuna-13b, means we use vicuna-13b as llm model, see /pilot/configs/model_config.LLM_MODEL_CONFIG-v /data/models:/app/models, means we mount the local model file directory/data/modelsto the docker container directory/app/models, please replace it with your model file directory.
You can see log with command:
$ docker logs db-gpt-allinone -f
Run with openai interface
$ PROXY_API_KEY="You api key"
$ PROXY_SERVER_URL="https://api.openai.com/v1/chat/completions"
$ docker run --gpus "device=0" -d -p 3306:3306 \
-p 5000:5000 \
-e LOCAL_DB_HOST=127.0.0.1 \
-e LOCAL_DB_PASSWORD=aa123456 \
-e MYSQL_ROOT_PASSWORD=aa123456 \
-e LLM_MODEL=proxyllm \
-e PROXY_API_KEY=$PROXY_API_KEY \
-e PROXY_SERVER_URL=$PROXY_SERVER_URL \
-e LANGUAGE=zh \
-v /data/models/text2vec-large-chinese:/app/models/text2vec-large-chinese \
--name db-gpt-allinone \
db-gpt-allinone
-e LLM_MODEL=proxyllm, means we use proxy llm(openai interface, fastchat interface...)-v /data/models/text2vec-large-chinese:/app/models/text2vec-large-chinese, means we mount the local text2vec model to the docker container.
Open http://localhost:5000 with your browser to see the product.