mirror of
https://github.com/csunny/DB-GPT.git
synced 2026-01-16 15:36:23 +00:00
124 lines
4.2 KiB
Python
124 lines
4.2 KiB
Python
from tempfile import NamedTemporaryFile
|
|
|
|
from fastapi import APIRouter, File, UploadFile
|
|
|
|
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
|
from pilot.configs.config import Config
|
|
from pilot.configs.model_config import LLM_MODEL_CONFIG
|
|
|
|
from pilot.openapi.api_v1.api_view_model import Result
|
|
from pilot.embedding_engine.knowledge_embedding import KnowledgeEmbedding
|
|
|
|
from pilot.openapi.knowledge.knowledge_service import KnowledgeService
|
|
from pilot.openapi.knowledge.request.knowledge_request import (
|
|
KnowledgeQueryRequest,
|
|
KnowledgeQueryResponse,
|
|
KnowledgeDocumentRequest,
|
|
DocumentSyncRequest,
|
|
ChunkQueryRequest,
|
|
DocumentQueryRequest,
|
|
)
|
|
|
|
from pilot.openapi.knowledge.request.knowledge_request import KnowledgeSpaceRequest
|
|
|
|
CFG = Config()
|
|
router = APIRouter()
|
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL])
|
|
|
|
knowledge_space_service = KnowledgeService()
|
|
|
|
|
|
@router.post("/knowledge/space/add")
|
|
def space_add(request: KnowledgeSpaceRequest):
|
|
print(f"/space/add params: {request}")
|
|
try:
|
|
knowledge_space_service.create_knowledge_space(request)
|
|
return Result.succ([])
|
|
except Exception as e:
|
|
return Result.faild(code="E000X", msg=f"space add error {e}")
|
|
|
|
|
|
@router.post("/knowledge/space/list")
|
|
def space_list(request: KnowledgeSpaceRequest):
|
|
print(f"/space/list params:")
|
|
try:
|
|
return Result.succ(knowledge_space_service.get_knowledge_space(request))
|
|
except Exception as e:
|
|
return Result.faild(code="E000X", msg=f"space list error {e}")
|
|
|
|
|
|
@router.post("/knowledge/{space_name}/document/add")
|
|
def document_add(space_name: str, request: KnowledgeDocumentRequest):
|
|
print(f"/document/add params: {space_name}, {request}")
|
|
try:
|
|
knowledge_space_service.create_knowledge_document(
|
|
space=space_name, request=request
|
|
)
|
|
return Result.succ([])
|
|
except Exception as e:
|
|
return Result.faild(code="E000X", msg=f"document add error {e}")
|
|
|
|
|
|
@router.post("/knowledge/{space_name}/document/list")
|
|
def document_list(space_name: str, query_request: DocumentQueryRequest):
|
|
print(f"/document/list params: {space_name}, {query_request}")
|
|
try:
|
|
return Result.succ(
|
|
knowledge_space_service.get_knowledge_documents(space_name, query_request)
|
|
)
|
|
except Exception as e:
|
|
return Result.faild(code="E000X", msg=f"document list error {e}")
|
|
|
|
|
|
@router.post("/knowledge/{space_name}/document/upload")
|
|
async def document_sync(space_name: str, file: UploadFile = File(...)):
|
|
print(f"/document/upload params: {space_name}")
|
|
try:
|
|
with NamedTemporaryFile(delete=False) as tmp:
|
|
tmp.write(file.read())
|
|
tmp_path = tmp.name
|
|
tmp_content = tmp.read()
|
|
|
|
return {"file_path": tmp_path, "file_content": tmp_content}
|
|
Result.succ([])
|
|
except Exception as e:
|
|
return Result.faild(code="E000X", msg=f"document sync error {e}")
|
|
|
|
|
|
@router.post("/knowledge/{space_name}/document/sync")
|
|
def document_sync(space_name: str, request: DocumentSyncRequest):
|
|
print(f"Received params: {space_name}, {request}")
|
|
try:
|
|
knowledge_space_service.sync_knowledge_document(
|
|
space_name=space_name, doc_ids=request.doc_ids
|
|
)
|
|
return Result.succ([])
|
|
except Exception as e:
|
|
return Result.faild(code="E000X", msg=f"document sync error {e}")
|
|
|
|
|
|
@router.post("/knowledge/{space_name}/chunk/list")
|
|
def document_list(space_name: str, query_request: ChunkQueryRequest):
|
|
print(f"/document/list params: {space_name}, {query_request}")
|
|
try:
|
|
return Result.succ(knowledge_space_service.get_document_chunks(query_request))
|
|
except Exception as e:
|
|
return Result.faild(code="E000X", msg=f"document chunk list error {e}")
|
|
|
|
|
|
@router.post("/knowledge/{vector_name}/query")
|
|
def similar_query(space_name: str, query_request: KnowledgeQueryRequest):
|
|
print(f"Received params: {space_name}, {query_request}")
|
|
client = KnowledgeEmbedding(
|
|
model_name=embeddings, vector_store_config={"vector_store_name": space_name}
|
|
)
|
|
docs = client.similar_search(query_request.query, query_request.top_k)
|
|
res = [
|
|
KnowledgeQueryResponse(text=d.page_content, source=d.metadata["source"])
|
|
for d in docs
|
|
]
|
|
return {"response": res}
|