mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-29 05:18:47 +00:00
67 lines
2.4 KiB
Python
67 lines
2.4 KiB
Python
from typing import Optional
|
|
|
|
from chromadb.errors import NotEnoughElementsException
|
|
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
|
from pilot.configs.config import Config
|
|
from pilot.embedding_engine.knowledge_type import get_knowledge_embedding, KnowledgeType
|
|
from pilot.vector_store.connector import VectorStoreConnector
|
|
|
|
CFG = Config()
|
|
|
|
|
|
class KnowledgeEmbedding:
|
|
def __init__(
|
|
self,
|
|
model_name,
|
|
vector_store_config,
|
|
knowledge_type: Optional[str] = KnowledgeType.DOCUMENT.value,
|
|
knowledge_source: Optional[str] = None,
|
|
):
|
|
"""Initialize with knowledge embedding client, model_name, vector_store_config, knowledge_type, knowledge_source"""
|
|
self.knowledge_source = knowledge_source
|
|
self.model_name = model_name
|
|
self.vector_store_config = vector_store_config
|
|
self.knowledge_type = knowledge_type
|
|
self.embeddings = HuggingFaceEmbeddings(model_name=self.model_name)
|
|
self.vector_store_config["embeddings"] = self.embeddings
|
|
|
|
def knowledge_embedding(self):
|
|
self.knowledge_embedding_client = self.init_knowledge_embedding()
|
|
self.knowledge_embedding_client.source_embedding()
|
|
|
|
def knowledge_embedding_batch(self, docs):
|
|
# docs = self.knowledge_embedding_client.read_batch()
|
|
return self.knowledge_embedding_client.index_to_store(docs)
|
|
|
|
def read(self):
|
|
self.knowledge_embedding_client = self.init_knowledge_embedding()
|
|
return self.knowledge_embedding_client.read_batch()
|
|
|
|
def init_knowledge_embedding(self):
|
|
return get_knowledge_embedding(
|
|
self.knowledge_type, self.knowledge_source, self.vector_store_config
|
|
)
|
|
|
|
def similar_search(self, text, topk):
|
|
vector_client = VectorStoreConnector(
|
|
CFG.VECTOR_STORE_TYPE, self.vector_store_config
|
|
)
|
|
try:
|
|
ans = vector_client.similar_search(text, topk)
|
|
except NotEnoughElementsException:
|
|
ans = vector_client.similar_search(text, 1)
|
|
return ans
|
|
|
|
def vector_exist(self):
|
|
vector_client = VectorStoreConnector(
|
|
CFG.VECTOR_STORE_TYPE, self.vector_store_config
|
|
)
|
|
return vector_client.vector_name_exists()
|
|
|
|
def delete_by_ids(self, ids):
|
|
vector_client = VectorStoreConnector(
|
|
CFG.VECTOR_STORE_TYPE, self.vector_store_config
|
|
)
|
|
vector_client.delete_by_ids(ids=ids)
|