mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-11-01 15:22:41 +00:00
68 lines
2.6 KiB
Python
68 lines
2.6 KiB
Python
import json
|
||
from pilot.prompts.prompt_new import PromptTemplate
|
||
from pilot.configs.config import Config
|
||
from pilot.scene.base import ChatScene
|
||
from pilot.scene.chat_data.chat_excel.excel_learning.out_parser import (
|
||
LearningExcelOutputParser,
|
||
)
|
||
from pilot.common.schema import SeparatorStyle
|
||
|
||
CFG = Config()
|
||
|
||
PROMPT_SCENE_DEFINE = "You are a data analysis expert. "
|
||
|
||
_DEFAULT_TEMPLATE_EN = """
|
||
This is an example data,please learn to understand the structure and content of this data:
|
||
{data_example}
|
||
Explain the meaning and function of each column, and give a simple and clear explanation of the technical terms.
|
||
Provide some analysis options,please think step by step.
|
||
|
||
Please return your answer in JSON format, the return format is as follows:
|
||
{response}
|
||
"""
|
||
|
||
_DEFAULT_TEMPLATE_ZH = """
|
||
下面是一份示例数据,请学习理解该数据的结构和内容:
|
||
{data_example}
|
||
分析各列数据的含义和作用,并对专业术语进行简单明了的解释。
|
||
提供一些分析方案思路,请一步一步思考。
|
||
|
||
请以JSON格式返回您的答案,返回格式如下:
|
||
{response}
|
||
"""
|
||
|
||
RESPONSE_FORMAT_SIMPLE = {
|
||
"DataAnalysis": "数据内容分析总结",
|
||
"ColumnAnalysis": [{"column name1": "字段1介绍,专业术语解释(请尽量简单明了)"}],
|
||
"AnalysisProgram": ["1.分析方案1,图表展示方式1", "2.分析方案2,图表展示方式2"],
|
||
}
|
||
|
||
_DEFAULT_TEMPLATE = (
|
||
_DEFAULT_TEMPLATE_EN if CFG.LANGUAGE == "en" else _DEFAULT_TEMPLATE_ZH
|
||
)
|
||
|
||
|
||
PROMPT_SEP = SeparatorStyle.SINGLE.value
|
||
|
||
PROMPT_NEED_NEED_STREAM_OUT = False
|
||
|
||
# Temperature is a configuration hyperparameter that controls the randomness of language model output.
|
||
# A high temperature produces more unpredictable and creative results, while a low temperature produces more common and conservative output.
|
||
# For example, if you adjust the temperature to 0.5, the model will usually generate text that is more predictable and less creative than if you set the temperature to 1.0.
|
||
PROMPT_TEMPERATURE = 0.5
|
||
|
||
prompt = PromptTemplate(
|
||
template_scene=ChatScene.ExcelLearning.value(),
|
||
input_variables=["data_example"],
|
||
response_format=json.dumps(RESPONSE_FORMAT_SIMPLE, ensure_ascii=False, indent=4),
|
||
template_define=PROMPT_SCENE_DEFINE,
|
||
template=_DEFAULT_TEMPLATE,
|
||
stream_out=PROMPT_NEED_NEED_STREAM_OUT,
|
||
output_parser=LearningExcelOutputParser(
|
||
sep=PROMPT_SEP, is_stream_out=PROMPT_NEED_NEED_STREAM_OUT
|
||
),
|
||
# example_selector=sql_data_example,
|
||
temperature=PROMPT_TEMPERATURE,
|
||
)
|
||
CFG.prompt_template_registry.register(prompt, is_default=True)
|