mirror of
				https://github.com/csunny/DB-GPT.git
				synced 2025-10-31 14:56:04 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			54 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			54 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import json
 | ||
| from pilot.prompts.prompt_new import PromptTemplate
 | ||
| from pilot.configs.config import Config
 | ||
| from pilot.scene.base import ChatScene
 | ||
| from pilot.scene.chat_db.auto_execute.out_parser import DbChatOutputParser, SqlAction
 | ||
| from pilot.common.schema import SeparatorStyle
 | ||
| 
 | ||
| CFG = Config()
 | ||
| 
 | ||
| PROMPT_SCENE_DEFINE = "You are a data analysis expert. "
 | ||
| 
 | ||
| _DEFAULT_TEMPLATE = """
 | ||
| This is an example data,please learn to understand the structure and content of this data:
 | ||
|     {data_example}
 | ||
| Explain the meaning and function of each column, and give a simple and clear explanation of the technical terms.  
 | ||
| Provide some analysis options,please think step by step.
 | ||
| 
 | ||
| Please return your answer in JSON format, the return format is as follows:
 | ||
|     {response}
 | ||
| """
 | ||
| 
 | ||
| RESPONSE_FORMAT_SIMPLE =     {
 | ||
|     "Data Analysis": "数据内容分析总结",
 | ||
|     "Colunm Analysis": [{"colunm name": "字段介绍,专业术语解释(请尽量简单明了)"}],
 | ||
|     "Analysis Program": ["1.分析方案1,图表展示方式1", "2.分析方案2,图表展示方式2"],
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| PROMPT_SEP = SeparatorStyle.SINGLE.value
 | ||
| 
 | ||
| PROMPT_NEED_NEED_STREAM_OUT = False
 | ||
| 
 | ||
| # Temperature is a configuration hyperparameter that controls the randomness of language model output.
 | ||
| # A high temperature produces more unpredictable and creative results, while a low temperature produces more common and conservative output.
 | ||
| # For example, if you adjust the temperature to 0.5, the model will usually generate text that is more predictable and less creative than if you set the temperature to 1.0.
 | ||
| PROMPT_TEMPERATURE = 0.5
 | ||
| 
 | ||
| prompt = PromptTemplate(
 | ||
|     template_scene=ChatScene.ExcelLearning.value(),
 | ||
|     input_variables=["data_example"],
 | ||
|     response_format=json.dumps(RESPONSE_FORMAT_SIMPLE, ensure_ascii=False, indent=4),
 | ||
|     template_define=PROMPT_SCENE_DEFINE,
 | ||
|     template=_DEFAULT_TEMPLATE,
 | ||
|     stream_out=PROMPT_NEED_NEED_STREAM_OUT,
 | ||
|     output_parser=DbChatOutputParser(
 | ||
|         sep=PROMPT_SEP, is_stream_out=PROMPT_NEED_NEED_STREAM_OUT
 | ||
|     ),
 | ||
|     # example_selector=sql_data_example,
 | ||
|     temperature=PROMPT_TEMPERATURE,
 | ||
| )
 | ||
| CFG.prompt_template_registry.register(prompt, is_default=True)
 | ||
| 
 |