mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-10-23 01:49:58 +00:00
136 lines
4.7 KiB
Python
136 lines
4.7 KiB
Python
"""DBSchemaAssembler."""
|
|
from typing import Any, List, Optional
|
|
|
|
from dbgpt.core import Chunk, Embeddings
|
|
from dbgpt.datasource.base import BaseConnector
|
|
from dbgpt.storage.vector_store.connector import VectorStoreConnector
|
|
|
|
from ..assembler.base import BaseAssembler
|
|
from ..chunk_manager import ChunkParameters
|
|
from ..embedding.embedding_factory import DefaultEmbeddingFactory
|
|
from ..knowledge.datasource import DatasourceKnowledge
|
|
from ..retriever.db_schema import DBSchemaRetriever
|
|
|
|
|
|
class DBSchemaAssembler(BaseAssembler):
|
|
"""DBSchemaAssembler.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from dbgpt.datasource.rdbms.conn_sqlite import SQLiteTempConnector
|
|
from dbgpt.serve.rag.assembler.db_struct import DBSchemaAssembler
|
|
from dbgpt.storage.vector_store.connector import VectorStoreConnector
|
|
from dbgpt.storage.vector_store.chroma_store import ChromaVectorConfig
|
|
|
|
connection = SQLiteTempConnector.create_temporary_db()
|
|
assembler = DBSchemaAssembler.load_from_connection(
|
|
connector=connection,
|
|
embedding_model=embedding_model_path,
|
|
)
|
|
assembler.persist()
|
|
# get db struct retriever
|
|
retriever = assembler.as_retriever(top_k=3)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
connector: BaseConnector,
|
|
vector_store_connector: VectorStoreConnector,
|
|
chunk_parameters: Optional[ChunkParameters] = None,
|
|
embedding_model: Optional[str] = None,
|
|
embeddings: Optional[Embeddings] = None,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""Initialize with Embedding Assembler arguments.
|
|
|
|
Args:
|
|
connector: (BaseConnector) BaseConnector connection.
|
|
vector_store_connector: (VectorStoreConnector) VectorStoreConnector to use.
|
|
chunk_manager: (Optional[ChunkManager]) ChunkManager to use for chunking.
|
|
embedding_model: (Optional[str]) Embedding model to use.
|
|
embeddings: (Optional[Embeddings]) Embeddings to use.
|
|
"""
|
|
knowledge = DatasourceKnowledge(connector)
|
|
self._connector = connector
|
|
self._vector_store_connector = vector_store_connector
|
|
|
|
self._embedding_model = embedding_model
|
|
if self._embedding_model and not embeddings:
|
|
embeddings = DefaultEmbeddingFactory(
|
|
default_model_name=self._embedding_model
|
|
).create(self._embedding_model)
|
|
|
|
if (
|
|
embeddings
|
|
and self._vector_store_connector.vector_store_config.embedding_fn is None
|
|
):
|
|
self._vector_store_connector.vector_store_config.embedding_fn = embeddings
|
|
|
|
super().__init__(
|
|
knowledge=knowledge,
|
|
chunk_parameters=chunk_parameters,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def load_from_connection(
|
|
cls,
|
|
connector: BaseConnector,
|
|
vector_store_connector: VectorStoreConnector,
|
|
chunk_parameters: Optional[ChunkParameters] = None,
|
|
embedding_model: Optional[str] = None,
|
|
embeddings: Optional[Embeddings] = None,
|
|
) -> "DBSchemaAssembler":
|
|
"""Load document embedding into vector store from path.
|
|
|
|
Args:
|
|
connector: (BaseConnector) BaseConnector connection.
|
|
vector_store_connector: (VectorStoreConnector) VectorStoreConnector to use.
|
|
chunk_parameters: (Optional[ChunkParameters]) ChunkManager to use for
|
|
chunking.
|
|
embedding_model: (Optional[str]) Embedding model to use.
|
|
embeddings: (Optional[Embeddings]) Embeddings to use.
|
|
Returns:
|
|
DBSchemaAssembler
|
|
"""
|
|
return cls(
|
|
connector=connector,
|
|
vector_store_connector=vector_store_connector,
|
|
embedding_model=embedding_model,
|
|
chunk_parameters=chunk_parameters,
|
|
embeddings=embeddings,
|
|
)
|
|
|
|
def get_chunks(self) -> List[Chunk]:
|
|
"""Return chunk ids."""
|
|
return self._chunks
|
|
|
|
def persist(self) -> List[str]:
|
|
"""Persist chunks into vector store.
|
|
|
|
Returns:
|
|
List[str]: List of chunk ids.
|
|
"""
|
|
return self._vector_store_connector.load_document(self._chunks)
|
|
|
|
def _extract_info(self, chunks) -> List[Chunk]:
|
|
"""Extract info from chunks."""
|
|
return []
|
|
|
|
def as_retriever(self, top_k: int = 4, **kwargs) -> DBSchemaRetriever:
|
|
"""Create DBSchemaRetriever.
|
|
|
|
Args:
|
|
top_k(int): default 4.
|
|
|
|
Returns:
|
|
DBSchemaRetriever
|
|
"""
|
|
return DBSchemaRetriever(
|
|
top_k=top_k,
|
|
connector=self._connector,
|
|
is_embeddings=True,
|
|
vector_store_connector=self._vector_store_connector,
|
|
)
|