Files
DB-GPT/dbgpt/rag/assembler/embedding.py
2024-03-22 15:36:57 +08:00

125 lines
4.1 KiB
Python

"""Embedding Assembler."""
from typing import Any, List, Optional
from dbgpt.core import Chunk, Embeddings
from dbgpt.storage.vector_store.connector import VectorStoreConnector
from ..assembler.base import BaseAssembler
from ..chunk_manager import ChunkParameters
from ..embedding.embedding_factory import DefaultEmbeddingFactory
from ..knowledge.base import Knowledge
from ..retriever.embedding import EmbeddingRetriever
class EmbeddingAssembler(BaseAssembler):
"""Embedding Assembler.
Example:
.. code-block:: python
from dbgpt.rag.assembler import EmbeddingAssembler
pdf_path = "path/to/document.pdf"
knowledge = KnowledgeFactory.from_file_path(pdf_path)
assembler = EmbeddingAssembler.load_from_knowledge(
knowledge=knowledge,
embedding_model="text2vec",
)
"""
def __init__(
self,
knowledge: Knowledge,
vector_store_connector: VectorStoreConnector,
chunk_parameters: Optional[ChunkParameters] = None,
embedding_model: Optional[str] = None,
embeddings: Optional[Embeddings] = None,
**kwargs: Any,
) -> None:
"""Initialize with Embedding Assembler arguments.
Args:
knowledge: (Knowledge) Knowledge datasource.
vector_store_connector: (VectorStoreConnector) VectorStoreConnector to use.
chunk_parameters: (Optional[ChunkParameters]) ChunkManager to use for
chunking.
embedding_model: (Optional[str]) Embedding model to use.
embeddings: (Optional[Embeddings]) Embeddings to use.
"""
if knowledge is None:
raise ValueError("knowledge datasource must be provided.")
self._vector_store_connector = vector_store_connector
self._embedding_model = embedding_model
if self._embedding_model and not embeddings:
embeddings = DefaultEmbeddingFactory(
default_model_name=self._embedding_model
).create(self._embedding_model)
if (
embeddings
and self._vector_store_connector.vector_store_config.embedding_fn is None
):
self._vector_store_connector.vector_store_config.embedding_fn = embeddings
super().__init__(
knowledge=knowledge,
chunk_parameters=chunk_parameters,
**kwargs,
)
@classmethod
def load_from_knowledge(
cls,
knowledge: Knowledge,
vector_store_connector: VectorStoreConnector,
chunk_parameters: Optional[ChunkParameters] = None,
embedding_model: Optional[str] = None,
embeddings: Optional[Embeddings] = None,
) -> "EmbeddingAssembler":
"""Load document embedding into vector store from path.
Args:
knowledge: (Knowledge) Knowledge datasource.
vector_store_connector: (VectorStoreConnector) VectorStoreConnector to use.
chunk_parameters: (Optional[ChunkParameters]) ChunkManager to use for
chunking.
embedding_model: (Optional[str]) Embedding model to use.
embeddings: (Optional[Embeddings]) Embeddings to use.
Returns:
EmbeddingAssembler
"""
return cls(
knowledge=knowledge,
vector_store_connector=vector_store_connector,
chunk_parameters=chunk_parameters,
embedding_model=embedding_model,
embeddings=embeddings,
)
def persist(self) -> List[str]:
"""Persist chunks into vector store.
Returns:
List[str]: List of chunk ids.
"""
return self._vector_store_connector.load_document(self._chunks)
def _extract_info(self, chunks) -> List[Chunk]:
"""Extract info from chunks."""
return []
def as_retriever(self, top_k: int = 4, **kwargs) -> EmbeddingRetriever:
"""Create a retriever.
Args:
top_k(int): default 4.
Returns:
EmbeddingRetriever
"""
return EmbeddingRetriever(
top_k=top_k, vector_store_connector=self._vector_store_connector
)