Files
DB-GPT/pilot/vector_store/extract_tovec.py
2023-05-06 00:41:35 +08:00

69 lines
2.5 KiB
Python

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import os
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from pilot.model.vicuna_llm import VicunaEmbeddingLLM
from pilot.configs.model_config import VECTORE_PATH, DATASETS_DIR
from langchain.embeddings import HuggingFaceEmbeddings
embeddings = VicunaEmbeddingLLM()
def knownledge_tovec(filename):
with open(filename, "r") as f:
knownledge = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(knownledge)
docsearch = Chroma.from_texts(
texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]
)
return docsearch
def knownledge_tovec_st(filename):
""" Use sentence transformers to embedding the document.
https://github.com/UKPLab/sentence-transformers
"""
from pilot.configs.model_config import LLM_MODEL_CONFIG
embeddings = HuggingFaceEmbeddings(model_name=LLM_MODEL_CONFIG["sentence-transforms"])
with open(filename, "r") as f:
knownledge = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(knownledge)
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))])
return docsearch
def load_knownledge_from_doc():
"""从数据集当中加载知识
# TODO 如果向量存储已经存在, 则无需初始化
"""
if not os.path.exists(DATASETS_DIR):
print("Not Exists Local DataSets, We will answers the Question use model default.")
from pilot.configs.model_config import LLM_MODEL_CONFIG
embeddings = HuggingFaceEmbeddings(model_name=LLM_MODEL_CONFIG["sentence-transforms"])
files = os.listdir(DATASETS_DIR)
for file in files:
if not os.path.isdir(file):
filename = os.path.join(DATASETS_DIR, file)
with open(filename, "r") as f:
knownledge = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_owerlap=0)
texts = text_splitter.split_text(knownledge)
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))],
persist_directory=os.path.join(VECTORE_PATH, ".vectore"))
return docsearch
def get_vector_storelist():
if not os.path.exists(VECTORE_PATH):
return []
return os.listdir(VECTORE_PATH)