Files
DB-GPT/pilot/server/knowledge/document_chunk_dao.py
aries_ckt 91d6edc4eb feat: knowledge management backend api
1.create knowledge space
2.list knowledge space
3.create knowledge document
4.list knowledge document
5.save document chunks
6.sync embedding document
2023-06-26 15:24:25 +08:00

84 lines
3.3 KiB
Python

from datetime import datetime
from typing import List
from sqlalchemy import Column, String, DateTime, Integer, Text, create_engine
from sqlalchemy.orm import declarative_base, sessionmaker
from pilot.configs.config import Config
CFG = Config()
Base = declarative_base()
class DocumentChunkEntity(Base):
__tablename__ = 'document_chunk'
id = Column(Integer, primary_key=True)
document_id = Column(Integer)
doc_name = Column(String(100))
doc_type = Column(String(100))
content = Column(Text)
meta_info = Column(String(500))
gmt_created = Column(DateTime)
gmt_modified = Column(DateTime)
def __repr__(self):
return f"DocumentChunkEntity(id={self.id}, doc_name='{self.doc_name}', doc_type='{self.doc_type}', document_id='{self.document_id}', content='{self.content}', meta_info='{self.meta_info}', gmt_created='{self.gmt_created}', gmt_modified='{self.gmt_modified}')"
class DocumentChunkDao:
def __init__(self):
database = "knowledge_management"
self.db_engine = create_engine(
f'mysql+pymysql://{CFG.LOCAL_DB_USER}:{CFG.LOCAL_DB_PASSWORD}@{CFG.LOCAL_DB_HOST}:{CFG.LOCAL_DB_PORT}/{database}',
echo=True)
self.Session = sessionmaker(bind=self.db_engine)
def create_documents_chunks(self, documents:List):
session = self.Session()
docs = [
DocumentChunkEntity(
doc_name=document.doc_name,
doc_type=document.doc_type,
document_id=document.document_id,
content=document.content or "",
meta_info=document.meta_info or "",
gmt_created=datetime.now(),
gmt_modified=datetime.now()
)
for document in documents]
session.add_all(docs)
session.commit()
session.close()
def get_document_chunks(self, query:DocumentChunkEntity, page=1, page_size=20):
session = self.Session()
document_chunks = session.query(DocumentChunkEntity)
if query.id is not None:
document_chunks = document_chunks.filter(DocumentChunkEntity.id == query.id)
if query.document_id is not None:
document_chunks = document_chunks.filter(DocumentChunkEntity.document_id == query.document_id)
if query.doc_type is not None:
document_chunks = document_chunks.filter(DocumentChunkEntity.doc_type == query.doc_type)
if query.doc_name is not None:
document_chunks = document_chunks.filter(DocumentChunkEntity.doc_name == query.doc_name)
if query.meta_info is not None:
document_chunks = document_chunks.filter(DocumentChunkEntity.meta_info == query.meta_info)
document_chunks = document_chunks.order_by(DocumentChunkEntity.id.desc())
document_chunks = document_chunks.offset((page - 1) * page_size).limit(page_size)
result = document_chunks.all()
return result
# def update_knowledge_document(self, document:KnowledgeDocumentEntity):
# session = self.Session()
# updated_space = session.merge(document)
# session.commit()
# return updated_space.id
# def delete_knowledge_document(self, document_id:int):
# cursor = self.conn.cursor()
# query = "DELETE FROM knowledge_document WHERE id = %s"
# cursor.execute(query, (document_id,))
# self.conn.commit()
# cursor.close()