Files
DB-GPT/dbgpt/storage/knowledge_graph/knowledge_graph.py
Jingxuan Su 9336e80f1d Support embedding similarity search for GraphRAG (#2200)
Co-authored-by: Appointat <kuda.czk@antgroup.com>
Co-authored-by: Lyu Songlin <lyusonglin990625@gmail.com>
Co-authored-by: SonglinLyu <111941624+SonglinLyu@users.noreply.github.com>
2025-01-14 12:39:01 +08:00

292 lines
10 KiB
Python

"""Knowledge graph class."""
import asyncio
import logging
import os
from typing import List, Optional
from dbgpt._private.pydantic import ConfigDict, Field
from dbgpt.core import Chunk, Embeddings, LLMClient
from dbgpt.core.awel.flow import Parameter, ResourceCategory, register_resource
from dbgpt.rag.transformer.keyword_extractor import KeywordExtractor
from dbgpt.rag.transformer.triplet_extractor import TripletExtractor
from dbgpt.storage.graph_store.base import GraphStoreBase, GraphStoreConfig
from dbgpt.storage.graph_store.factory import GraphStoreFactory
from dbgpt.storage.graph_store.graph import Graph
from dbgpt.storage.knowledge_graph.base import KnowledgeGraphBase, KnowledgeGraphConfig
from dbgpt.storage.knowledge_graph.community.base import GraphStoreAdapter
from dbgpt.storage.knowledge_graph.community.factory import GraphStoreAdapterFactory
from dbgpt.storage.vector_store.filters import MetadataFilters
from dbgpt.util.i18n_utils import _
logger = logging.getLogger(__name__)
GRAPH_PARAMETERS = [
Parameter.build_from(
_("Graph Name"),
"name",
str,
description=_("The name of Graph, if not set, will use the default name."),
optional=True,
default="dbgpt_collection",
),
Parameter.build_from(
_("Embedding Function"),
"embedding_fn",
Embeddings,
description=_(
"The embedding function of vector store, if not set, will use "
"the default embedding function."
),
optional=True,
default=None,
),
Parameter.build_from(
_("Max Chunks Once Load"),
"max_chunks_once_load",
int,
description=_(
"The max number of chunks to load at once. If your document is "
"large, you can set this value to a larger number to speed up the loading "
"process. Default is 10."
),
optional=True,
default=10,
),
Parameter.build_from(
_("Max Threads"),
"max_threads",
int,
description=_(
"The max number of threads to use. Default is 1. If you set "
"this bigger than 1, please make sure your vector store is thread-safe."
),
optional=True,
default=1,
),
]
@register_resource(
_("Builtin Graph Config"),
"knowledge_graph_config",
category=ResourceCategory.KNOWLEDGE_GRAPH,
description=_("knowledge graph config."),
parameters=[
*GRAPH_PARAMETERS,
Parameter.build_from(
_("Knowledge Graph Type"),
"graph_store_type",
str,
description=_("graph store type."),
optional=True,
default="TuGraph",
),
Parameter.build_from(
_("LLM Client"),
"llm_client",
LLMClient,
description=_("llm client for extract graph triplets."),
),
Parameter.build_from(
_("LLM Model Name"),
"model_name",
str,
description=_("llm model name."),
optional=True,
default=None,
),
],
)
class BuiltinKnowledgeGraphConfig(KnowledgeGraphConfig):
"""Builtin knowledge graph config."""
model_config = ConfigDict(arbitrary_types_allowed=True)
llm_client: LLMClient = Field(default=None, description="The default llm client.")
model_name: str = Field(default=None, description="The name of llm model.")
graph_store_type: str = Field(
default="TuGraph", description="The type of graph store."
)
@register_resource(
_("Builtin Knowledge Graph"),
"builtin_knowledge_graph",
category=ResourceCategory.KNOWLEDGE_GRAPH,
description=_("Builtin Knowledge Graph."),
parameters=[
Parameter.build_from(
_("Builtin Knowledge Graph Config."),
"config",
BuiltinKnowledgeGraphConfig,
description=_("Builtin Knowledge Graph Config."),
optional=True,
default=None,
),
],
)
class BuiltinKnowledgeGraph(KnowledgeGraphBase):
"""Builtin knowledge graph class."""
def __init__(self, config: BuiltinKnowledgeGraphConfig):
"""Create builtin knowledge graph instance."""
super().__init__()
self._config = config
self._llm_client = config.llm_client
if not self._llm_client:
raise ValueError("No llm client provided.")
self._model_name = config.model_name
self._triplet_extractor = TripletExtractor(self._llm_client, self._model_name)
self._keyword_extractor = KeywordExtractor(self._llm_client, self._model_name)
self._graph_store: GraphStoreBase = self.__init_graph_store(config)
self._graph_store_apdater: GraphStoreAdapter = self.__init_graph_store_adapter()
def __init_graph_store(self, config: BuiltinKnowledgeGraphConfig) -> GraphStoreBase:
def configure(cfg: GraphStoreConfig):
cfg.name = config.name
cfg.embedding_fn = config.embedding_fn
graph_store_type = os.getenv("GRAPH_STORE_TYPE") or config.graph_store_type
return GraphStoreFactory.create(graph_store_type, configure)
def __init_graph_store_adapter(self):
return GraphStoreAdapterFactory.create(self._graph_store)
def get_config(self) -> BuiltinKnowledgeGraphConfig:
"""Get the knowledge graph config."""
return self._config
def load_document(self, chunks: List[Chunk]) -> List[str]:
"""Extract and persist triplets to graph store."""
async def process_chunk(chunk: Chunk):
triplets = await self._triplet_extractor.extract(chunk.content)
for triplet in triplets:
self._graph_store_apdater.insert_triplet(*triplet)
logger.info(f"load {len(triplets)} triplets from chunk {chunk.chunk_id}")
return chunk.chunk_id
# wait async tasks completed
if not self.vector_name_exists():
self._graph_store_apdater.create_graph(self.get_config().name)
tasks = [process_chunk(chunk) for chunk in chunks]
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()
return result
async def aload_document(self, chunks: List[Chunk]) -> List[str]: # type: ignore
"""Extract and persist triplets to graph store.
Args:
chunks: List[Chunk]: document chunks.
Return:
List[str]: chunk ids.
"""
if not self.vector_name_exists():
self._graph_store_apdater.create_graph(self.get_config().name)
for chunk in chunks:
triplets = await self._triplet_extractor.extract(chunk.content)
for triplet in triplets:
self._graph_store_apdater.insert_triplet(*triplet)
logger.info(f"load {len(triplets)} triplets from chunk {chunk.chunk_id}")
return [chunk.chunk_id for chunk in chunks]
def similar_search_with_scores(
self,
text,
topk,
score_threshold: float,
filters: Optional[MetadataFilters] = None,
) -> List[Chunk]:
"""Search neighbours on knowledge graph."""
raise Exception("Sync similar_search_with_scores not supported")
async def asimilar_search_with_scores(
self,
text,
topk,
score_threshold: float,
filters: Optional[MetadataFilters] = None,
) -> List[Chunk]:
"""Search neighbours on knowledge graph."""
if not filters:
logger.info("Filters on knowledge graph not supported yet")
# extract keywords and explore graph store
keywords = await self._keyword_extractor.extract(text)
subgraph = self._graph_store_apdater.explore_trigraph(
keywords, limit=topk
).format()
logger.info(f"Search subgraph from {len(keywords)} keywords")
if not subgraph:
return []
content = (
"The following entities and relationships provided after "
"[Subgraph] are retrieved from the knowledge graph "
"based on the keywords:\n"
f'"{",".join(keywords)}".\n'
"---------------------\n"
"The following examples after [Entities] and [Relationships] that "
"can help you understand the data format of the knowledge graph, "
"but do not use them in the answer.\n"
"[Entities]:\n"
"(alice)\n"
"(bob:{age:28})\n"
'(carry:{age:18;role:"teacher"})\n\n'
"[Relationships]:\n"
"(alice)-[reward]->(alice)\n"
'(alice)-[notify:{method:"email"}]->'
'(carry:{age:18;role:"teacher"})\n'
'(bob:{age:28})-[teach:{course:"math";hour:180}]->(alice)\n'
"---------------------\n"
f"[Subgraph]:\n{subgraph}\n"
)
return [Chunk(content=content)]
def query_graph(self, limit: Optional[int] = None) -> Graph:
"""Query graph."""
return self._graph_store_apdater.get_full_graph(limit)
def truncate(self) -> List[str]:
"""Truncate knowledge graph."""
logger.info(f"Truncate graph {self._config.name}")
self._graph_store_apdater.truncate()
logger.info("Truncate keyword extractor")
self._keyword_extractor.truncate()
logger.info("Truncate triplet extractor")
self._triplet_extractor.truncate()
return [self._config.name]
def delete_vector_name(self, index_name: str):
"""Delete vector name."""
logger.info(f"Drop graph {index_name}")
self._graph_store_apdater.drop()
logger.info("Drop keyword extractor")
self._keyword_extractor.drop()
logger.info("Drop triplet extractor")
self._triplet_extractor.drop()
def delete_by_ids(self, ids: str) -> List[str]:
"""Delete by ids."""
self._graph_store_apdater.delete_document(chunk_id=ids)
return []
def vector_name_exists(self) -> bool:
"""Whether name exists."""
return self._graph_store_apdater.graph_store.is_exist(self._config.name)