Files
DB-GPT/pilot/vector_store/chroma_store.py
2023-06-06 15:03:41 +08:00

37 lines
1.3 KiB
Python

import os
from langchain.vectorstores import Chroma
from pilot.configs.model_config import KNOWLEDGE_UPLOAD_ROOT_PATH
from pilot.logs import logger
from pilot.vector_store.vector_store_base import VectorStoreBase
class ChromaStore(VectorStoreBase):
"""chroma database"""
def __init__(self, ctx: {}) -> None:
self.ctx = ctx
self.embeddings = ctx["embeddings"]
self.persist_dir = os.path.join(
KNOWLEDGE_UPLOAD_ROOT_PATH, ctx["vector_store_name"] + ".vectordb"
)
self.vector_store_client = Chroma(
persist_directory=self.persist_dir, embedding_function=self.embeddings
)
def similar_search(self, text, topk) -> None:
logger.info("ChromaStore similar search")
return self.vector_store_client.similarity_search(text, topk)
def vector_name_exists(self):
return (
os.path.exists(self.persist_dir) and len(os.listdir(self.persist_dir)) > 0
)
def load_document(self, documents):
logger.info("ChromaStore load document")
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
self.vector_store_client.add_texts(texts=texts, metadatas=metadatas)
self.vector_store_client.persist()