Files
DB-GPT/dbgpt/serve/rag/assembler/embedding.py
Aries-ckt 9ad70a2961 refactor: RAG Refactor (#985)
Co-authored-by: Aralhi <xiaoping0501@gmail.com>
Co-authored-by: csunny <cfqsunny@163.com>
2024-01-03 09:45:26 +08:00

117 lines
4.3 KiB
Python

import os
from typing import Optional, Any, List
from dbgpt.rag.chunk import Chunk
from dbgpt.rag.chunk_manager import ChunkParameters
from dbgpt.rag.embedding.embedding_factory import EmbeddingFactory
from dbgpt.rag.knowledge.base import Knowledge
from dbgpt.rag.retriever.embedding import EmbeddingRetriever
from dbgpt.serve.rag.assembler.base import BaseAssembler
from dbgpt.storage.vector_store.connector import VectorStoreConnector
class EmbeddingAssembler(BaseAssembler):
"""Embedding Assembler
Example:
.. code-block:: python
from dbgpt.rag.assembler import EmbeddingAssembler
pdf_path = "path/to/document.pdf"
knowledge = KnowledgeFactory.from_file_path(pdf_path)
assembler = EmbeddingAssembler.load_from_knowledge(
knowledge=knowledge,
embedding_model="text2vec",
)
"""
def __init__(
self,
knowledge: Knowledge = None,
chunk_parameters: Optional[ChunkParameters] = None,
embedding_model: Optional[str] = None,
embedding_factory: Optional[EmbeddingFactory] = None,
vector_store_connector: Optional[VectorStoreConnector] = None,
**kwargs: Any,
) -> None:
"""Initialize with Embedding Assembler arguments.
Args:
knowledge: (Knowledge) Knowledge datasource.
chunk_parameters: (Optional[ChunkParameters]) ChunkManager to use for chunking.
embedding_model: (Optional[str]) Embedding model to use.
embedding_factory: (Optional[EmbeddingFactory]) EmbeddingFactory to use.
vector_store_connector: (Optional[VectorStoreConnector]) VectorStoreConnector to use.
"""
if knowledge is None:
raise ValueError("knowledge datasource must be provided.")
from dbgpt.rag.embedding.embedding_factory import DefaultEmbeddingFactory
embedding_factory = embedding_factory or DefaultEmbeddingFactory(
default_model_name=os.getenv("EMBEDDING_MODEL")
)
if embedding_model:
embedding_fn = embedding_factory.create(model_name=embedding_model)
self._vector_store_connector = (
vector_store_connector
or VectorStoreConnector.from_default(embedding_fn=embedding_fn)
)
super().__init__(
knowledge=knowledge,
chunk_parameters=chunk_parameters,
**kwargs,
)
@classmethod
def load_from_knowledge(
cls,
knowledge: Knowledge = None,
chunk_parameters: Optional[ChunkParameters] = None,
embedding_model: Optional[str] = None,
embedding_factory: Optional[EmbeddingFactory] = None,
vector_store_connector: Optional[VectorStoreConnector] = None,
) -> "EmbeddingAssembler":
"""Load document embedding into vector store from path.
Args:
knowledge: (Knowledge) Knowledge datasource.
chunk_parameters: (Optional[ChunkParameters]) ChunkManager to use for chunking.
embedding_model: (Optional[str]) Embedding model to use.
embedding_factory: (Optional[EmbeddingFactory]) EmbeddingFactory to use.
vector_store_connector: (Optional[VectorStoreConnector]) VectorStoreConnector to use.
Returns:
EmbeddingAssembler
"""
from dbgpt.rag.embedding.embedding_factory import DefaultEmbeddingFactory
embedding_factory = embedding_factory or DefaultEmbeddingFactory(
default_model_name=embedding_model or os.getenv("EMBEDDING_MODEL_PATH")
)
return cls(
knowledge=knowledge,
chunk_parameters=chunk_parameters,
embedding_model=embedding_model,
embedding_factory=embedding_factory,
vector_store_connector=vector_store_connector,
)
def persist(self) -> List[str]:
"""Persist chunks into vector store."""
return self._vector_store_connector.load_document(self._chunks)
def _extract_info(self, chunks) -> List[Chunk]:
"""Extract info from chunks."""
pass
def as_retriever(self, top_k: Optional[int] = 4) -> EmbeddingRetriever:
"""
Args:
top_k:(Optional[int]), default 4
Returns:
EmbeddingRetriever
"""
return EmbeddingRetriever(
top_k=top_k, vector_store_connector=self._vector_store_connector
)