mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-10-23 18:31:22 +00:00
Co-authored-by: Aralhi <xiaoping0501@gmail.com> Co-authored-by: csunny <cfqsunny@163.com>
117 lines
4.3 KiB
Python
117 lines
4.3 KiB
Python
import os
|
|
from typing import Optional, Any, List
|
|
|
|
from dbgpt.rag.chunk import Chunk
|
|
from dbgpt.rag.chunk_manager import ChunkParameters
|
|
from dbgpt.rag.embedding.embedding_factory import EmbeddingFactory
|
|
from dbgpt.rag.knowledge.base import Knowledge
|
|
from dbgpt.rag.retriever.embedding import EmbeddingRetriever
|
|
from dbgpt.serve.rag.assembler.base import BaseAssembler
|
|
from dbgpt.storage.vector_store.connector import VectorStoreConnector
|
|
|
|
|
|
class EmbeddingAssembler(BaseAssembler):
|
|
"""Embedding Assembler
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
from dbgpt.rag.assembler import EmbeddingAssembler
|
|
|
|
pdf_path = "path/to/document.pdf"
|
|
knowledge = KnowledgeFactory.from_file_path(pdf_path)
|
|
assembler = EmbeddingAssembler.load_from_knowledge(
|
|
knowledge=knowledge,
|
|
embedding_model="text2vec",
|
|
)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
knowledge: Knowledge = None,
|
|
chunk_parameters: Optional[ChunkParameters] = None,
|
|
embedding_model: Optional[str] = None,
|
|
embedding_factory: Optional[EmbeddingFactory] = None,
|
|
vector_store_connector: Optional[VectorStoreConnector] = None,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""Initialize with Embedding Assembler arguments.
|
|
Args:
|
|
knowledge: (Knowledge) Knowledge datasource.
|
|
chunk_parameters: (Optional[ChunkParameters]) ChunkManager to use for chunking.
|
|
embedding_model: (Optional[str]) Embedding model to use.
|
|
embedding_factory: (Optional[EmbeddingFactory]) EmbeddingFactory to use.
|
|
vector_store_connector: (Optional[VectorStoreConnector]) VectorStoreConnector to use.
|
|
"""
|
|
if knowledge is None:
|
|
raise ValueError("knowledge datasource must be provided.")
|
|
from dbgpt.rag.embedding.embedding_factory import DefaultEmbeddingFactory
|
|
|
|
embedding_factory = embedding_factory or DefaultEmbeddingFactory(
|
|
default_model_name=os.getenv("EMBEDDING_MODEL")
|
|
)
|
|
if embedding_model:
|
|
embedding_fn = embedding_factory.create(model_name=embedding_model)
|
|
self._vector_store_connector = (
|
|
vector_store_connector
|
|
or VectorStoreConnector.from_default(embedding_fn=embedding_fn)
|
|
)
|
|
|
|
super().__init__(
|
|
knowledge=knowledge,
|
|
chunk_parameters=chunk_parameters,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def load_from_knowledge(
|
|
cls,
|
|
knowledge: Knowledge = None,
|
|
chunk_parameters: Optional[ChunkParameters] = None,
|
|
embedding_model: Optional[str] = None,
|
|
embedding_factory: Optional[EmbeddingFactory] = None,
|
|
vector_store_connector: Optional[VectorStoreConnector] = None,
|
|
) -> "EmbeddingAssembler":
|
|
"""Load document embedding into vector store from path.
|
|
Args:
|
|
knowledge: (Knowledge) Knowledge datasource.
|
|
chunk_parameters: (Optional[ChunkParameters]) ChunkManager to use for chunking.
|
|
embedding_model: (Optional[str]) Embedding model to use.
|
|
embedding_factory: (Optional[EmbeddingFactory]) EmbeddingFactory to use.
|
|
vector_store_connector: (Optional[VectorStoreConnector]) VectorStoreConnector to use.
|
|
Returns:
|
|
EmbeddingAssembler
|
|
"""
|
|
from dbgpt.rag.embedding.embedding_factory import DefaultEmbeddingFactory
|
|
|
|
embedding_factory = embedding_factory or DefaultEmbeddingFactory(
|
|
default_model_name=embedding_model or os.getenv("EMBEDDING_MODEL_PATH")
|
|
)
|
|
return cls(
|
|
knowledge=knowledge,
|
|
chunk_parameters=chunk_parameters,
|
|
embedding_model=embedding_model,
|
|
embedding_factory=embedding_factory,
|
|
vector_store_connector=vector_store_connector,
|
|
)
|
|
|
|
def persist(self) -> List[str]:
|
|
"""Persist chunks into vector store."""
|
|
return self._vector_store_connector.load_document(self._chunks)
|
|
|
|
def _extract_info(self, chunks) -> List[Chunk]:
|
|
"""Extract info from chunks."""
|
|
pass
|
|
|
|
def as_retriever(self, top_k: Optional[int] = 4) -> EmbeddingRetriever:
|
|
"""
|
|
Args:
|
|
top_k:(Optional[int]), default 4
|
|
Returns:
|
|
EmbeddingRetriever
|
|
"""
|
|
return EmbeddingRetriever(
|
|
top_k=top_k, vector_store_connector=self._vector_store_connector
|
|
)
|