mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-10-03 08:07:20 +00:00
Co-authored-by: Aralhi <xiaoping0501@gmail.com> Co-authored-by: csunny <cfqsunny@163.com>
54 lines
1.8 KiB
Python
54 lines
1.8 KiB
Python
import asyncio
|
|
|
|
from dbgpt.rag.chunk_manager import ChunkParameters
|
|
from dbgpt.rag.embedding.embedding_factory import DefaultEmbeddingFactory
|
|
from dbgpt.rag.knowledge.factory import KnowledgeFactory
|
|
from dbgpt.serve.rag.assembler.embedding import EmbeddingAssembler
|
|
from dbgpt.storage.vector_store.chroma_store import ChromaVectorConfig
|
|
from dbgpt.storage.vector_store.connector import VectorStoreConnector
|
|
|
|
"""Embedding rag example.
|
|
pre-requirements:
|
|
set your embedding model path in your example code.
|
|
```
|
|
embedding_model_path = "{your_embedding_model_path}"
|
|
```
|
|
|
|
Examples:
|
|
..code-block:: shell
|
|
python examples/rag/embedding_rag_example.py
|
|
"""
|
|
|
|
|
|
async def main():
|
|
file_path = "./docs/docs/awel.md"
|
|
vector_persist_path = "{your_persist_path}"
|
|
embedding_model_path = "{your_embedding_model_path}"
|
|
knowledge = KnowledgeFactory.from_file_path(file_path)
|
|
vector_connector = VectorStoreConnector.from_default(
|
|
"Chroma",
|
|
vector_store_config=ChromaVectorConfig(
|
|
name="vector_name",
|
|
persist_path=vector_persist_path,
|
|
),
|
|
embedding_fn=DefaultEmbeddingFactory(
|
|
default_model_name=embedding_model_path
|
|
).create(),
|
|
)
|
|
chunk_parameters = ChunkParameters(chunk_strategy="CHUNK_BY_SIZE")
|
|
# get embedding assembler
|
|
assembler = EmbeddingAssembler.load_from_knowledge(
|
|
knowledge=knowledge,
|
|
chunk_parameters=chunk_parameters,
|
|
vector_store_connector=vector_connector,
|
|
)
|
|
assembler.persist()
|
|
# get embeddings retriever
|
|
retriever = assembler.as_retriever(3)
|
|
chunks = await retriever.aretrieve_with_scores("RAG", 0.3)
|
|
print(f"embedding rag example results:{chunks}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main())
|