Files
DB-GPT/pilot/embedding_engine/source_embedding.py

127 lines
3.9 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from abc import ABC, abstractmethod
from typing import Dict, List, Optional
from langchain.text_splitter import TextSplitter
from pilot.vector_store.connector import VectorStoreConnector
registered_methods = []
def register(method):
registered_methods.append(method.__name__)
return method
class SourceEmbedding(ABC):
"""base class for read data source embedding pipeline.
include data read, data process, data split, data to vector, data index vector store
Implementations should implement the method
"""
def __init__(
self,
file_path,
vector_store_config: {},
source_reader: Optional = None,
text_splitter: Optional[TextSplitter] = None,
embedding_args: Optional[Dict] = None,
):
"""Initialize with Loader url, model_name, vector_store_config
Args:
- file_path: data source path
- vector_store_config: vector store config params.
- source_reader: Optional[BaseLoader]
- text_splitter: Optional[TextSplitter]
- embedding_args: Optional
"""
self.file_path = file_path
self.vector_store_config = vector_store_config or {}
self.source_reader = source_reader or None
self.text_splitter = text_splitter or None
self.embedding_args = embedding_args
self.embeddings = self.vector_store_config.get("embeddings", None)
@abstractmethod
@register
def read(self) -> List[ABC]:
"""read datasource into document objects."""
@register
def data_process(self, text):
"""pre process data.
Args:
- text: raw text
"""
@register
def text_splitter(self, text_splitter: TextSplitter):
"""add text split chunk
Args:
- text_splitter: TextSplitter
"""
pass
@register
def text_to_vector(self, docs):
"""transform vector
Args:
- docs: List[Document]
"""
pass
@register
def index_to_store(self, docs):
"""index to vector store
Args:
- docs: List[Document]
"""
self.vector_client = VectorStoreConnector(
self.vector_store_config["vector_store_type"], self.vector_store_config
)
return self.vector_client.load_document(docs)
@register
def similar_search(self, doc, topk):
"""vector store similarity_search
Args:
- query: query
"""
self.vector_client = VectorStoreConnector(
self.vector_store_config["vector_store_type"], self.vector_store_config
)
# https://github.com/chroma-core/chroma/issues/657
ans = self.vector_client.similar_search(doc, topk)
# ans = self.vector_client.similar_search(doc, 1)
return ans
def vector_name_exist(self):
self.vector_client = VectorStoreConnector(
self.vector_store_config["vector_store_type"], self.vector_store_config
)
return self.vector_client.vector_name_exists()
def source_embedding(self):
"""read()->data_process()->text_split()->index_to_store()"""
if "read" in registered_methods:
text = self.read()
if "data_process" in registered_methods:
text = self.data_process(text)
if "text_split" in registered_methods:
self.text_split(text)
if "text_to_vector" in registered_methods:
self.text_to_vector(text)
if "index_to_store" in registered_methods:
self.index_to_store(text)
def read_batch(self):
if "read" in registered_methods:
text = self.read()
if "data_process" in registered_methods:
text = self.data_process(text)
if "text_split" in registered_methods:
self.text_split(text)
return text