mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-29 13:34:14 +00:00
42 lines
1.2 KiB
Python
42 lines
1.2 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
from typing import List
|
|
|
|
from langchain.document_loaders import UnstructuredPowerPointLoader
|
|
from langchain.schema import Document
|
|
from langchain.text_splitter import SpacyTextSplitter
|
|
|
|
from pilot.configs.config import Config
|
|
from pilot.source_embedding import SourceEmbedding, register
|
|
|
|
CFG = Config()
|
|
|
|
|
|
class PPTEmbedding(SourceEmbedding):
|
|
"""ppt embedding for read ppt document."""
|
|
|
|
def __init__(self, file_path, vector_store_config):
|
|
"""Initialize with pdf path."""
|
|
super().__init__(file_path, vector_store_config)
|
|
self.file_path = file_path
|
|
self.vector_store_config = vector_store_config
|
|
|
|
@register
|
|
def read(self):
|
|
"""Load from ppt path."""
|
|
loader = UnstructuredPowerPointLoader(self.file_path)
|
|
textsplitter = SpacyTextSplitter(
|
|
pipeline="zh_core_web_sm",
|
|
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
|
chunk_overlap=200,
|
|
)
|
|
return loader.load_and_split(textsplitter)
|
|
|
|
@register
|
|
def data_process(self, documents: List[Document]):
|
|
i = 0
|
|
for d in documents:
|
|
documents[i].page_content = d.page_content.replace("\n", "")
|
|
i += 1
|
|
return documents
|