Files
DB-GPT/pilot/source_embedding/markdown_embedding.py
2023-06-12 20:57:00 +08:00

48 lines
1.6 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
from typing import List
import markdown
from bs4 import BeautifulSoup
from langchain.schema import Document
from langchain.text_splitter import SpacyTextSplitter
from pilot.configs.config import Config
from pilot.source_embedding import SourceEmbedding, register
from pilot.source_embedding.EncodeTextLoader import EncodeTextLoader
from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter
CFG = Config()
class MarkdownEmbedding(SourceEmbedding):
"""markdown embedding for read markdown document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with markdown path."""
super().__init__(file_path, vector_store_config)
self.file_path = file_path
self.vector_store_config = vector_store_config
# self.encoding = encoding
@register
def read(self):
"""Load from markdown path."""
loader = EncodeTextLoader(self.file_path)
textsplitter = SpacyTextSplitter(pipeline='zh_core_web_sm', chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE, chunk_overlap=200)
return loader.load_and_split(textsplitter)
@register
def data_process(self, documents: List[Document]):
i = 0
for d in documents:
content = markdown.markdown(d.page_content)
soup = BeautifulSoup(content, "html.parser")
for tag in soup(["!doctype", "meta", "i.fa"]):
tag.extract()
documents[i].page_content = soup.get_text()
documents[i].page_content = documents[i].page_content.replace("\n", " ")
i += 1
return documents