Files
DB-GPT/pilot/embedding_engine/embedding_engine.py
aries_ckt a357ab498a refactor:refactor knowledge api
1.delete CFG in embedding_engine api
2.add a text_splitter param in embedding_engine api
2023-07-11 16:33:48 +08:00

64 lines
2.4 KiB
Python

from typing import Optional
from chromadb.errors import NotEnoughElementsException
from langchain.embeddings import HuggingFaceEmbeddings
from pilot.embedding_engine.knowledge_type import get_knowledge_embedding, KnowledgeType
from pilot.vector_store.connector import VectorStoreConnector
class EmbeddingEngine:
def __init__(
self,
model_name,
vector_store_config,
knowledge_type: Optional[str] = KnowledgeType.DOCUMENT.value,
knowledge_source: Optional[str] = None,
):
"""Initialize with knowledge embedding client, model_name, vector_store_config, knowledge_type, knowledge_source"""
self.knowledge_source = knowledge_source
self.model_name = model_name
self.vector_store_config = vector_store_config
self.knowledge_type = knowledge_type
self.embeddings = HuggingFaceEmbeddings(model_name=self.model_name)
self.vector_store_config["embeddings"] = self.embeddings
def knowledge_embedding(self):
self.knowledge_embedding_client = self.init_knowledge_embedding()
self.knowledge_embedding_client.source_embedding()
def knowledge_embedding_batch(self, docs):
# docs = self.knowledge_embedding_client.read_batch()
return self.knowledge_embedding_client.index_to_store(docs)
def read(self):
self.knowledge_embedding_client = self.init_knowledge_embedding()
return self.knowledge_embedding_client.read_batch()
def init_knowledge_embedding(self):
return get_knowledge_embedding(
self.knowledge_type, self.knowledge_source, self.vector_store_config
)
def similar_search(self, text, topk):
vector_client = VectorStoreConnector(
self.vector_store_config["vector_store_type"], self.vector_store_config
)
try:
ans = vector_client.similar_search(text, topk)
except NotEnoughElementsException:
ans = vector_client.similar_search(text, 1)
return ans
def vector_exist(self):
vector_client = VectorStoreConnector(
self.vector_store_config["vector_store_type"], self.vector_store_config
)
return vector_client.vector_name_exists()
def delete_by_ids(self, ids):
vector_client = VectorStoreConnector(
self.vector_store_config["vector_store_type"], self.vector_store_config
)
vector_client.delete_by_ids(ids=ids)