Files
DB-GPT/dbgpt/serve/rag/assembler/db_schema.py
2024-03-14 13:06:57 +08:00

155 lines
6.2 KiB
Python

import os
from typing import Any, List, Optional
from dbgpt.datasource.rdbms.base import RDBMSDatabase
from dbgpt.rag.chunk import Chunk
from dbgpt.rag.chunk_manager import ChunkManager, ChunkParameters
from dbgpt.rag.embedding.embedding_factory import EmbeddingFactory
from dbgpt.rag.knowledge.base import ChunkStrategy, Knowledge
from dbgpt.rag.knowledge.factory import KnowledgeFactory
from dbgpt.rag.retriever.db_schema import DBSchemaRetriever
from dbgpt.rag.summary.rdbms_db_summary import _parse_db_summary
from dbgpt.serve.rag.assembler.base import BaseAssembler
from dbgpt.storage.vector_store.connector import VectorStoreConnector
class DBSchemaAssembler(BaseAssembler):
"""DBSchemaAssembler
Example:
.. code-block:: python
from dbgpt.datasource.rdbms.conn_sqlite import SQLiteTempConnect
from dbgpt.serve.rag.assembler.db_struct import DBSchemaAssembler
from dbgpt.storage.vector_store.connector import VectorStoreConnector
from dbgpt.storage.vector_store.chroma_store import ChromaVectorConfig
connection = SQLiteTempConnect.create_temporary_db()
assembler = DBSchemaAssembler.load_from_connection(
connection=connection,
embedding_model=embedding_model_path,
)
assembler.persist()
# get db struct retriever
retriever = assembler.as_retriever(top_k=3)
"""
def __init__(
self,
connection: RDBMSDatabase = None,
chunk_parameters: Optional[ChunkParameters] = None,
embedding_model: Optional[str] = None,
embedding_factory: Optional[EmbeddingFactory] = None,
vector_store_connector: Optional[VectorStoreConnector] = None,
**kwargs: Any,
) -> None:
"""Initialize with Embedding Assembler arguments.
Args:
connection: (RDBMSDatabase) RDBMSDatabase connection.
knowledge: (Knowledge) Knowledge datasource.
chunk_manager: (Optional[ChunkManager]) ChunkManager to use for chunking.
embedding_model: (Optional[str]) Embedding model to use.
embedding_factory: (Optional[EmbeddingFactory]) EmbeddingFactory to use.
vector_store_connector: (Optional[VectorStoreConnector]) VectorStoreConnector to use.
"""
if connection is None:
raise ValueError("datasource connection must be provided.")
self._connection = connection
self._vector_store_connector = vector_store_connector
from dbgpt.rag.embedding.embedding_factory import DefaultEmbeddingFactory
self._embedding_model = embedding_model
if self._embedding_model:
embedding_factory = embedding_factory or DefaultEmbeddingFactory(
default_model_name=self._embedding_model
)
self.embedding_fn = embedding_factory.create(self._embedding_model)
if self._vector_store_connector.vector_store_config.embedding_fn is None:
self._vector_store_connector.vector_store_config.embedding_fn = (
self.embedding_fn
)
super().__init__(
chunk_parameters=chunk_parameters,
**kwargs,
)
@classmethod
def load_from_connection(
cls,
connection: RDBMSDatabase = None,
knowledge: Optional[Knowledge] = None,
chunk_parameters: Optional[ChunkParameters] = None,
embedding_model: Optional[str] = None,
embedding_factory: Optional[EmbeddingFactory] = None,
vector_store_connector: Optional[VectorStoreConnector] = None,
) -> "DBSchemaAssembler":
"""Load document embedding into vector store from path.
Args:
connection: (RDBMSDatabase) RDBMSDatabase connection.
knowledge: (Knowledge) Knowledge datasource.
chunk_parameters: (Optional[ChunkParameters]) ChunkManager to use for chunking.
embedding_model: (Optional[str]) Embedding model to use.
embedding_factory: (Optional[EmbeddingFactory]) EmbeddingFactory to use.
vector_store_connector: (Optional[VectorStoreConnector]) VectorStoreConnector to use.
Returns:
DBSchemaAssembler
"""
embedding_factory = embedding_factory
chunk_parameters = chunk_parameters or ChunkParameters(
chunk_strategy=ChunkStrategy.CHUNK_BY_SIZE.name, chunk_overlap=0
)
return cls(
connection=connection,
knowledge=knowledge,
embedding_model=embedding_model,
chunk_parameters=chunk_parameters,
embedding_factory=embedding_factory,
vector_store_connector=vector_store_connector,
)
def load_knowledge(self, knowledge: Optional[Knowledge] = None) -> None:
table_summaries = _parse_db_summary(self._connection)
self._chunks = []
self._knowledge = knowledge
for table_summary in table_summaries:
from dbgpt.rag.knowledge.base import KnowledgeType
self._knowledge = KnowledgeFactory.from_text(
text=table_summary, knowledge_type=KnowledgeType.DOCUMENT
)
self._chunk_parameters.chunk_size = len(table_summary)
self._chunk_manager = ChunkManager(
knowledge=self._knowledge, chunk_parameter=self._chunk_parameters
)
self._chunks.extend(self._chunk_manager.split(self._knowledge.load()))
def get_chunks(self) -> List[Chunk]:
"""Return chunk ids."""
return self._chunks
def persist(self) -> List[str]:
"""Persist chunks into vector store.
Returns:
List[str]: List of chunk ids.
"""
return self._vector_store_connector.load_document(self._chunks)
def _extract_info(self, chunks) -> List[Chunk]:
"""Extract info from chunks."""
def as_retriever(self, top_k: Optional[int] = 4) -> DBSchemaRetriever:
"""
Args:
top_k:(Optional[int]), default 4
Returns:
DBSchemaRetriever
"""
return DBSchemaRetriever(
top_k=top_k,
connection=self._connection,
is_embeddings=True,
vector_store_connector=self._vector_store_connector,
)