Files
DB-GPT/examples/rag/retriever_evaluation_example.py
2024-03-14 13:06:57 +08:00

83 lines
2.7 KiB
Python

import asyncio
import os
from typing import Optional
from dbgpt.configs.model_config import MODEL_PATH, PILOT_PATH, ROOT_PATH
from dbgpt.core import Embeddings
from dbgpt.rag.chunk_manager import ChunkParameters
from dbgpt.rag.embedding import DefaultEmbeddingFactory
from dbgpt.rag.evaluation import RetrieverEvaluator
from dbgpt.rag.knowledge import KnowledgeFactory
from dbgpt.rag.operators import EmbeddingRetrieverOperator
from dbgpt.serve.rag.assembler.embedding import EmbeddingAssembler
from dbgpt.storage.vector_store.chroma_store import ChromaVectorConfig
from dbgpt.storage.vector_store.connector import VectorStoreConnector
def _create_embeddings(
model_name: Optional[str] = "text2vec-large-chinese",
) -> Embeddings:
"""Create embeddings."""
return DefaultEmbeddingFactory(
default_model_name=os.path.join(MODEL_PATH, model_name),
).create()
def _create_vector_connector(
embeddings: Embeddings, space_name: str = "retriever_evaluation_example"
) -> VectorStoreConnector:
"""Create vector connector."""
return VectorStoreConnector.from_default(
"Chroma",
vector_store_config=ChromaVectorConfig(
name=space_name,
persist_path=os.path.join(PILOT_PATH, "data"),
),
embedding_fn=embeddings,
)
async def main():
file_path = os.path.join(ROOT_PATH, "docs/docs/awel/awel.md")
knowledge = KnowledgeFactory.from_file_path(file_path)
embeddings = _create_embeddings()
vector_connector = _create_vector_connector(embeddings)
chunk_parameters = ChunkParameters(chunk_strategy="CHUNK_BY_SIZE")
# get embedding assembler
assembler = EmbeddingAssembler.load_from_knowledge(
knowledge=knowledge,
chunk_parameters=chunk_parameters,
vector_store_connector=vector_connector,
)
assembler.persist()
dataset = [
{
"query": "what is awel talk about",
"contexts": [
"Through the AWEL API, you can focus on the development"
" of business logic for LLMs applications without paying "
"attention to cumbersome model and environment details."
],
},
]
evaluator = RetrieverEvaluator(
operator_cls=EmbeddingRetrieverOperator,
embeddings=embeddings,
operator_kwargs={
"top_k": 5,
"vector_store_connector": vector_connector,
},
)
results = await evaluator.evaluate(dataset)
for result in results:
for metric in result:
print("Metric:", metric.metric_name)
print("Question:", metric.query)
print("Score:", metric.score)
print(f"Results:\n{results}")
if __name__ == "__main__":
asyncio.run(main())