mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-10-23 10:20:01 +00:00
778 lines
26 KiB
Python
778 lines
26 KiB
Python
from __future__ import annotations
|
||
|
||
from abc import ABC, abstractmethod
|
||
from typing import Dict, List, Tuple, Union, Optional
|
||
from datetime import datetime
|
||
|
||
from dbgpt._private.pydantic import BaseModel, Field
|
||
|
||
from dbgpt.core.interface.storage import (
|
||
ResourceIdentifier,
|
||
StorageItem,
|
||
StorageInterface,
|
||
InMemoryStorage,
|
||
)
|
||
|
||
|
||
class BaseMessage(BaseModel, ABC):
|
||
"""Message object."""
|
||
|
||
content: str
|
||
index: int = 0
|
||
round_index: int = 0
|
||
"""The round index of the message in the conversation"""
|
||
additional_kwargs: dict = Field(default_factory=dict)
|
||
|
||
@property
|
||
@abstractmethod
|
||
def type(self) -> str:
|
||
"""Type of the message, used for serialization."""
|
||
|
||
@property
|
||
def pass_to_model(self) -> bool:
|
||
"""Whether the message will be passed to the model"""
|
||
return True
|
||
|
||
def to_dict(self) -> Dict:
|
||
"""Convert to dict
|
||
|
||
Returns:
|
||
Dict: The dict object
|
||
"""
|
||
return {
|
||
"type": self.type,
|
||
"data": self.dict(),
|
||
"index": self.index,
|
||
"round_index": self.round_index,
|
||
}
|
||
|
||
|
||
class HumanMessage(BaseMessage):
|
||
"""Type of message that is spoken by the human."""
|
||
|
||
example: bool = False
|
||
|
||
@property
|
||
def type(self) -> str:
|
||
"""Type of the message, used for serialization."""
|
||
return "human"
|
||
|
||
|
||
class AIMessage(BaseMessage):
|
||
"""Type of message that is spoken by the AI."""
|
||
|
||
example: bool = False
|
||
|
||
@property
|
||
def type(self) -> str:
|
||
"""Type of the message, used for serialization."""
|
||
return "ai"
|
||
|
||
|
||
class ViewMessage(BaseMessage):
|
||
"""Type of message that is spoken by the AI."""
|
||
|
||
example: bool = False
|
||
|
||
@property
|
||
def type(self) -> str:
|
||
"""Type of the message, used for serialization."""
|
||
return "view"
|
||
|
||
@property
|
||
def pass_to_model(self) -> bool:
|
||
"""Whether the message will be passed to the model
|
||
|
||
The view message will not be passed to the model
|
||
"""
|
||
return False
|
||
|
||
|
||
class SystemMessage(BaseMessage):
|
||
"""Type of message that is a system message."""
|
||
|
||
@property
|
||
def type(self) -> str:
|
||
"""Type of the message, used for serialization."""
|
||
return "system"
|
||
|
||
|
||
class ModelMessageRoleType:
|
||
""" "Type of ModelMessage role"""
|
||
|
||
SYSTEM = "system"
|
||
HUMAN = "human"
|
||
AI = "ai"
|
||
VIEW = "view"
|
||
|
||
|
||
class ModelMessage(BaseModel):
|
||
"""Type of message that interaction between dbgpt-server and llm-server"""
|
||
|
||
"""Similar to openai's message format"""
|
||
role: str
|
||
content: str
|
||
|
||
@staticmethod
|
||
def from_openai_messages(
|
||
messages: Union[str, List[Dict[str, str]]]
|
||
) -> List["ModelMessage"]:
|
||
"""Openai message format to current ModelMessage format"""
|
||
if isinstance(messages, str):
|
||
return [ModelMessage(role=ModelMessageRoleType.HUMAN, content=messages)]
|
||
result = []
|
||
for message in messages:
|
||
msg_role = message["role"]
|
||
content = message["content"]
|
||
if msg_role == "system":
|
||
result.append(
|
||
ModelMessage(role=ModelMessageRoleType.SYSTEM, content=content)
|
||
)
|
||
elif msg_role == "user":
|
||
result.append(
|
||
ModelMessage(role=ModelMessageRoleType.HUMAN, content=content)
|
||
)
|
||
elif msg_role == "assistant":
|
||
result.append(
|
||
ModelMessage(role=ModelMessageRoleType.AI, content=content)
|
||
)
|
||
else:
|
||
raise ValueError(f"Unknown role: {msg_role}")
|
||
return result
|
||
|
||
@staticmethod
|
||
def to_openai_messages(messages: List["ModelMessage"]) -> List[Dict[str, str]]:
|
||
"""Convert to OpenAI message format and
|
||
hugggingface [Templates of Chat Models](https://huggingface.co/docs/transformers/v4.34.1/en/chat_templating)
|
||
"""
|
||
history = []
|
||
# Add history conversation
|
||
for message in messages:
|
||
if message.role == ModelMessageRoleType.HUMAN:
|
||
history.append({"role": "user", "content": message.content})
|
||
elif message.role == ModelMessageRoleType.SYSTEM:
|
||
history.append({"role": "system", "content": message.content})
|
||
elif message.role == ModelMessageRoleType.AI:
|
||
history.append({"role": "assistant", "content": message.content})
|
||
else:
|
||
pass
|
||
# Move the last user's information to the end
|
||
temp_his = history[::-1]
|
||
last_user_input = None
|
||
for m in temp_his:
|
||
if m["role"] == "user":
|
||
last_user_input = m
|
||
break
|
||
if last_user_input:
|
||
history.remove(last_user_input)
|
||
history.append(last_user_input)
|
||
return history
|
||
|
||
@staticmethod
|
||
def to_dict_list(messages: List["ModelMessage"]) -> List[Dict[str, str]]:
|
||
return list(map(lambda m: m.dict(), messages))
|
||
|
||
@staticmethod
|
||
def build_human_message(content: str) -> "ModelMessage":
|
||
return ModelMessage(role=ModelMessageRoleType.HUMAN, content=content)
|
||
|
||
|
||
def _message_to_dict(message: BaseMessage) -> Dict:
|
||
return message.to_dict()
|
||
|
||
|
||
def _messages_to_dict(messages: List[BaseMessage]) -> List[Dict]:
|
||
return [_message_to_dict(m) for m in messages]
|
||
|
||
|
||
def _message_from_dict(message: Dict) -> BaseMessage:
|
||
_type = message["type"]
|
||
if _type == "human":
|
||
return HumanMessage(**message["data"])
|
||
elif _type == "ai":
|
||
return AIMessage(**message["data"])
|
||
elif _type == "system":
|
||
return SystemMessage(**message["data"])
|
||
elif _type == "view":
|
||
return ViewMessage(**message["data"])
|
||
else:
|
||
raise ValueError(f"Got unexpected type: {_type}")
|
||
|
||
|
||
def _messages_from_dict(messages: List[Dict]) -> List[BaseMessage]:
|
||
return [_message_from_dict(m) for m in messages]
|
||
|
||
|
||
def _parse_model_messages(
|
||
messages: List[ModelMessage],
|
||
) -> Tuple[str, List[str], List[List[str, str]]]:
|
||
"""
|
||
Parameters:
|
||
messages: List of message from base chat.
|
||
Returns:
|
||
A tuple contains user prompt, system message list and history message list
|
||
str: user prompt
|
||
List[str]: system messages
|
||
List[List[str]]: history message of user and assistant
|
||
"""
|
||
user_prompt = ""
|
||
system_messages: List[str] = []
|
||
history_messages: List[List[str]] = [[]]
|
||
|
||
for message in messages[:-1]:
|
||
if message.role == "human":
|
||
history_messages[-1].append(message.content)
|
||
elif message.role == "system":
|
||
system_messages.append(message.content)
|
||
elif message.role == "ai":
|
||
history_messages[-1].append(message.content)
|
||
history_messages.append([])
|
||
if messages[-1].role != "human":
|
||
raise ValueError("Hi! What do you want to talk about?")
|
||
# Keep message a pair of [user message, assistant message]
|
||
history_messages = list(filter(lambda x: len(x) == 2, history_messages))
|
||
user_prompt = messages[-1].content
|
||
return user_prompt, system_messages, history_messages
|
||
|
||
|
||
class OnceConversation:
|
||
"""All the information of a conversation, the current single service in memory,
|
||
can expand cache and database support distributed services.
|
||
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
chat_mode: str,
|
||
user_name: str = None,
|
||
sys_code: str = None,
|
||
summary: str = None,
|
||
**kwargs,
|
||
):
|
||
self.chat_mode: str = chat_mode
|
||
self.user_name: str = user_name
|
||
self.sys_code: str = sys_code
|
||
self.summary: str = summary
|
||
|
||
self.messages: List[BaseMessage] = kwargs.get("messages", [])
|
||
self.start_date: str = kwargs.get("start_date", "")
|
||
# After each complete round of dialogue, the current value will be increased by 1
|
||
self.chat_order: int = int(kwargs.get("chat_order", 0))
|
||
self.model_name: str = kwargs.get("model_name", "")
|
||
self.param_type: str = kwargs.get("param_type", "")
|
||
self.param_value: str = kwargs.get("param_value", "")
|
||
self.cost: int = int(kwargs.get("cost", 0))
|
||
self.tokens: int = int(kwargs.get("tokens", 0))
|
||
self._message_index: int = int(kwargs.get("message_index", 0))
|
||
|
||
def _append_message(self, message: BaseMessage) -> None:
|
||
index = self._message_index
|
||
self._message_index += 1
|
||
message.index = index
|
||
message.round_index = self.chat_order
|
||
self.messages.append(message)
|
||
|
||
def start_new_round(self) -> None:
|
||
"""Start a new round of conversation
|
||
|
||
Example:
|
||
>>> conversation = OnceConversation()
|
||
>>> # The chat order will be 0, then we start a new round of conversation
|
||
>>> assert conversation.chat_order == 0
|
||
>>> conversation.start_new_round()
|
||
>>> # Now the chat order will be 1
|
||
>>> assert conversation.chat_order == 1
|
||
>>> conversation.add_user_message("hello")
|
||
>>> conversation.add_ai_message("hi")
|
||
>>> conversation.end_current_round()
|
||
>>> # Now the chat order will be 1, then we start a new round of conversation
|
||
>>> conversation.start_new_round()
|
||
>>> # Now the chat order will be 2
|
||
>>> assert conversation.chat_order == 2
|
||
>>> conversation.add_user_message("hello")
|
||
>>> conversation.add_ai_message("hi")
|
||
>>> conversation.end_current_round()
|
||
>>> assert conversation.chat_order == 2
|
||
"""
|
||
self.chat_order += 1
|
||
|
||
def end_current_round(self) -> None:
|
||
"""End the current round of conversation
|
||
|
||
We do noting here, just for the interface
|
||
"""
|
||
pass
|
||
|
||
def add_user_message(
|
||
self, message: str, check_duplicate_type: Optional[bool] = False
|
||
) -> None:
|
||
"""Add a user message to the conversation
|
||
|
||
Args:
|
||
message (str): The message content
|
||
check_duplicate_type (bool): Whether to check the duplicate message type
|
||
|
||
Raises:
|
||
ValueError: If the message is duplicate and check_duplicate_type is True
|
||
"""
|
||
if check_duplicate_type:
|
||
has_message = any(
|
||
isinstance(instance, HumanMessage) for instance in self.messages
|
||
)
|
||
if has_message:
|
||
raise ValueError("Already Have Human message")
|
||
self._append_message(HumanMessage(content=message))
|
||
|
||
def add_ai_message(
|
||
self, message: str, update_if_exist: Optional[bool] = False
|
||
) -> None:
|
||
"""Add an AI message to the conversation
|
||
|
||
Args:
|
||
message (str): The message content
|
||
update_if_exist (bool): Whether to update the message if the message type is duplicate
|
||
"""
|
||
if not update_if_exist:
|
||
self._append_message(AIMessage(content=message))
|
||
return
|
||
has_message = any(isinstance(instance, AIMessage) for instance in self.messages)
|
||
if has_message:
|
||
self._update_ai_message(message)
|
||
else:
|
||
self._append_message(AIMessage(content=message))
|
||
|
||
def _update_ai_message(self, new_message: str) -> None:
|
||
"""
|
||
stream out message update
|
||
Args:
|
||
new_message:
|
||
|
||
Returns:
|
||
|
||
"""
|
||
|
||
for item in self.messages:
|
||
if item.type == "ai":
|
||
item.content = new_message
|
||
|
||
def add_view_message(self, message: str) -> None:
|
||
"""Add an AI message to the store"""
|
||
self._append_message(ViewMessage(content=message))
|
||
|
||
def add_system_message(self, message: str) -> None:
|
||
"""Add a system message to the store"""
|
||
self._append_message(SystemMessage(content=message))
|
||
|
||
def set_start_time(self, datatime: datetime):
|
||
dt_str = datatime.strftime("%Y-%m-%d %H:%M:%S")
|
||
self.start_date = dt_str
|
||
|
||
def clear(self) -> None:
|
||
"""Remove all messages from the store"""
|
||
self.messages.clear()
|
||
|
||
def get_latest_user_message(self) -> Optional[HumanMessage]:
|
||
"""Get the latest user message"""
|
||
for message in self.messages[::-1]:
|
||
if isinstance(message, HumanMessage):
|
||
return message
|
||
return None
|
||
|
||
def get_system_messages(self) -> List[SystemMessage]:
|
||
"""Get the latest user message"""
|
||
return list(filter(lambda x: isinstance(x, SystemMessage), self.messages))
|
||
|
||
def _to_dict(self) -> Dict:
|
||
return _conversation_to_dict(self)
|
||
|
||
def from_conversation(self, conversation: OnceConversation) -> None:
|
||
"""Load the conversation from the storage"""
|
||
self.chat_mode = conversation.chat_mode
|
||
self.messages = conversation.messages
|
||
self.start_date = conversation.start_date
|
||
self.chat_order = conversation.chat_order
|
||
self.model_name = conversation.model_name
|
||
self.param_type = conversation.param_type
|
||
self.param_value = conversation.param_value
|
||
self.cost = conversation.cost
|
||
self.tokens = conversation.tokens
|
||
self.user_name = conversation.user_name
|
||
self.sys_code = conversation.sys_code
|
||
|
||
def get_messages_by_round(self, round_index: int) -> List[BaseMessage]:
|
||
"""Get the messages by round index
|
||
|
||
Args:
|
||
round_index (int): The round index
|
||
|
||
Returns:
|
||
List[BaseMessage]: The messages
|
||
"""
|
||
return list(filter(lambda x: x.round_index == round_index, self.messages))
|
||
|
||
def get_latest_round(self) -> List[BaseMessage]:
|
||
"""Get the latest round messages
|
||
|
||
Returns:
|
||
List[BaseMessage]: The messages
|
||
"""
|
||
return self.get_messages_by_round(self.chat_order)
|
||
|
||
def get_messages_with_round(self, round_count: int) -> List[BaseMessage]:
|
||
"""Get the messages with round count
|
||
|
||
If the round count is 1, the history messages will not be included.
|
||
|
||
Example:
|
||
.. code-block:: python
|
||
conversation = OnceConversation()
|
||
conversation.start_new_round()
|
||
conversation.add_user_message("hello, this is the first round")
|
||
conversation.add_ai_message("hi")
|
||
conversation.end_current_round()
|
||
conversation.start_new_round()
|
||
conversation.add_user_message("hello, this is the second round")
|
||
conversation.add_ai_message("hi")
|
||
conversation.end_current_round()
|
||
conversation.start_new_round()
|
||
conversation.add_user_message("hello, this is the third round")
|
||
conversation.add_ai_message("hi")
|
||
conversation.end_current_round()
|
||
|
||
assert len(conversation.get_messages_with_round(1)) == 2
|
||
assert conversation.get_messages_with_round(1)[0].content == "hello, this is the third round"
|
||
assert conversation.get_messages_with_round(1)[1].content == "hi"
|
||
|
||
assert len(conversation.get_messages_with_round(2)) == 4
|
||
assert conversation.get_messages_with_round(2)[0].content == "hello, this is the second round"
|
||
assert conversation.get_messages_with_round(2)[1].content == "hi"
|
||
|
||
Args:
|
||
round_count (int): The round count
|
||
|
||
Returns:
|
||
List[BaseMessage]: The messages
|
||
"""
|
||
latest_round_index = self.chat_order
|
||
start_round_index = max(1, latest_round_index - round_count + 1)
|
||
messages = []
|
||
for round_index in range(start_round_index, latest_round_index + 1):
|
||
messages.extend(self.get_messages_by_round(round_index))
|
||
return messages
|
||
|
||
def get_model_messages(self) -> List[ModelMessage]:
|
||
"""Get the model messages
|
||
|
||
Model messages just include human, ai and system messages.
|
||
Model messages maybe include the history messages, The order of the messages is the same as the order of
|
||
the messages in the conversation, the last message is the latest message.
|
||
|
||
If you want to hand the message with your own logic, you can override this method.
|
||
|
||
Examples:
|
||
If you not need the history messages, you can override this method like this:
|
||
.. code-block:: python
|
||
def get_model_messages(self) -> List[ModelMessage]:
|
||
messages = []
|
||
for message in self.get_latest_round():
|
||
if message.pass_to_model:
|
||
messages.append(
|
||
ModelMessage(role=message.type, content=message.content)
|
||
)
|
||
return messages
|
||
|
||
If you want to add the one round history messages, you can override this method like this:
|
||
.. code-block:: python
|
||
def get_model_messages(self) -> List[ModelMessage]:
|
||
messages = []
|
||
latest_round_index = self.chat_order
|
||
round_count = 1
|
||
start_round_index = max(1, latest_round_index - round_count + 1)
|
||
for round_index in range(start_round_index, latest_round_index + 1):
|
||
for message in self.get_messages_by_round(round_index):
|
||
if message.pass_to_model:
|
||
messages.append(
|
||
ModelMessage(role=message.type, content=message.content)
|
||
)
|
||
return messages
|
||
|
||
Returns:
|
||
List[ModelMessage]: The model messages
|
||
"""
|
||
messages = []
|
||
for message in self.messages:
|
||
if message.pass_to_model:
|
||
messages.append(
|
||
ModelMessage(role=message.type, content=message.content)
|
||
)
|
||
return messages
|
||
|
||
|
||
class ConversationIdentifier(ResourceIdentifier):
|
||
"""Conversation identifier"""
|
||
|
||
def __init__(self, conv_uid: str, identifier_type: str = "conversation"):
|
||
self.conv_uid = conv_uid
|
||
self.identifier_type = identifier_type
|
||
|
||
@property
|
||
def str_identifier(self) -> str:
|
||
return f"{self.identifier_type}:{self.conv_uid}"
|
||
|
||
def to_dict(self) -> Dict:
|
||
return {"conv_uid": self.conv_uid, "identifier_type": self.identifier_type}
|
||
|
||
|
||
class MessageIdentifier(ResourceIdentifier):
|
||
"""Message identifier"""
|
||
|
||
identifier_split = "___"
|
||
|
||
def __init__(self, conv_uid: str, index: int, identifier_type: str = "message"):
|
||
self.conv_uid = conv_uid
|
||
self.index = index
|
||
self.identifier_type = identifier_type
|
||
|
||
@property
|
||
def str_identifier(self) -> str:
|
||
return f"{self.identifier_type}{self.identifier_split}{self.conv_uid}{self.identifier_split}{self.index}"
|
||
|
||
@staticmethod
|
||
def from_str_identifier(str_identifier: str) -> MessageIdentifier:
|
||
"""Convert from str identifier
|
||
|
||
Args:
|
||
str_identifier (str): The str identifier
|
||
|
||
Returns:
|
||
MessageIdentifier: The message identifier
|
||
"""
|
||
parts = str_identifier.split(MessageIdentifier.identifier_split)
|
||
if len(parts) != 3:
|
||
raise ValueError(f"Invalid str identifier: {str_identifier}")
|
||
return MessageIdentifier(parts[1], int(parts[2]))
|
||
|
||
def to_dict(self) -> Dict:
|
||
return {
|
||
"conv_uid": self.conv_uid,
|
||
"index": self.index,
|
||
"identifier_type": self.identifier_type,
|
||
}
|
||
|
||
|
||
class MessageStorageItem(StorageItem):
|
||
@property
|
||
def identifier(self) -> MessageIdentifier:
|
||
return self._id
|
||
|
||
def __init__(self, conv_uid: str, index: int, message_detail: Dict):
|
||
self.conv_uid = conv_uid
|
||
self.index = index
|
||
self.message_detail = message_detail
|
||
self._id = MessageIdentifier(conv_uid, index)
|
||
|
||
def to_dict(self) -> Dict:
|
||
return {
|
||
"conv_uid": self.conv_uid,
|
||
"index": self.index,
|
||
"message_detail": self.message_detail,
|
||
}
|
||
|
||
def to_message(self) -> BaseMessage:
|
||
"""Convert to message object
|
||
Returns:
|
||
BaseMessage: The message object
|
||
|
||
Raises:
|
||
ValueError: If the message type is not supported
|
||
"""
|
||
return _message_from_dict(self.message_detail)
|
||
|
||
def merge(self, other: "StorageItem") -> None:
|
||
"""Merge the other message to self
|
||
|
||
Args:
|
||
other (StorageItem): The other message
|
||
"""
|
||
if not isinstance(other, MessageStorageItem):
|
||
raise ValueError(f"Can not merge {other} to {self}")
|
||
self.message_detail = other.message_detail
|
||
|
||
|
||
class StorageConversation(OnceConversation, StorageItem):
|
||
"""All the information of a conversation, the current single service in memory,
|
||
can expand cache and database support distributed services.
|
||
|
||
"""
|
||
|
||
@property
|
||
def identifier(self) -> ConversationIdentifier:
|
||
return self._id
|
||
|
||
def to_dict(self) -> Dict:
|
||
dict_data = self._to_dict()
|
||
messages: Dict = dict_data.pop("messages")
|
||
message_ids = []
|
||
index = 0
|
||
for message in messages:
|
||
if "index" in message:
|
||
message_idx = message["index"]
|
||
else:
|
||
message_idx = index
|
||
index += 1
|
||
message_ids.append(
|
||
MessageIdentifier(self.conv_uid, message_idx).str_identifier
|
||
)
|
||
# Replace message with message ids
|
||
dict_data["conv_uid"] = self.conv_uid
|
||
dict_data["message_ids"] = message_ids
|
||
dict_data["save_message_independent"] = self.save_message_independent
|
||
return dict_data
|
||
|
||
def merge(self, other: "StorageItem") -> None:
|
||
"""Merge the other conversation to self
|
||
|
||
Args:
|
||
other (StorageItem): The other conversation
|
||
"""
|
||
if not isinstance(other, StorageConversation):
|
||
raise ValueError(f"Can not merge {other} to {self}")
|
||
self.from_conversation(other)
|
||
|
||
def __init__(
|
||
self,
|
||
conv_uid: str,
|
||
chat_mode: str = None,
|
||
user_name: str = None,
|
||
sys_code: str = None,
|
||
message_ids: List[str] = None,
|
||
summary: str = None,
|
||
save_message_independent: Optional[bool] = True,
|
||
conv_storage: StorageInterface = None,
|
||
message_storage: StorageInterface = None,
|
||
**kwargs,
|
||
):
|
||
super().__init__(chat_mode, user_name, sys_code, summary, **kwargs)
|
||
self.conv_uid = conv_uid
|
||
self._message_ids = message_ids
|
||
self.save_message_independent = save_message_independent
|
||
self._id = ConversationIdentifier(conv_uid)
|
||
if conv_storage is None:
|
||
conv_storage = InMemoryStorage()
|
||
if message_storage is None:
|
||
message_storage = InMemoryStorage()
|
||
self.conv_storage = conv_storage
|
||
self.message_storage = message_storage
|
||
# Load from storage
|
||
self.load_from_storage(self.conv_storage, self.message_storage)
|
||
|
||
@property
|
||
def message_ids(self) -> List[str]:
|
||
"""Get the message ids
|
||
|
||
Returns:
|
||
List[str]: The message ids
|
||
"""
|
||
return self._message_ids if self._message_ids else []
|
||
|
||
def end_current_round(self) -> None:
|
||
"""End the current round of conversation
|
||
|
||
Save the conversation to the storage after a round of conversation
|
||
"""
|
||
self.save_to_storage()
|
||
|
||
def _get_message_items(self) -> List[MessageStorageItem]:
|
||
return [
|
||
MessageStorageItem(self.conv_uid, message.index, message.to_dict())
|
||
for message in self.messages
|
||
]
|
||
|
||
def save_to_storage(self) -> None:
|
||
"""Save the conversation to the storage"""
|
||
# Save messages first
|
||
message_list = self._get_message_items()
|
||
self._message_ids = [
|
||
message.identifier.str_identifier for message in message_list
|
||
]
|
||
self.message_storage.save_list(message_list)
|
||
# Save conversation
|
||
self.conv_storage.save_or_update(self)
|
||
|
||
def load_from_storage(
|
||
self, conv_storage: StorageInterface, message_storage: StorageInterface
|
||
) -> None:
|
||
"""Load the conversation from the storage
|
||
|
||
Warning: This will overwrite the current conversation.
|
||
|
||
Args:
|
||
conv_storage (StorageInterface): The storage interface
|
||
message_storage (StorageInterface): The storage interface
|
||
"""
|
||
# Load conversation first
|
||
conversation: StorageConversation = conv_storage.load(
|
||
self._id, StorageConversation
|
||
)
|
||
if conversation is None:
|
||
return
|
||
message_ids = conversation._message_ids or []
|
||
|
||
# Load messages
|
||
message_list = message_storage.load_list(
|
||
[
|
||
MessageIdentifier.from_str_identifier(message_id)
|
||
for message_id in message_ids
|
||
],
|
||
MessageStorageItem,
|
||
)
|
||
messages = [message.to_message() for message in message_list]
|
||
conversation.messages = messages
|
||
self._message_ids = message_ids
|
||
self.from_conversation(conversation)
|
||
|
||
|
||
def _conversation_to_dict(once: OnceConversation) -> Dict:
|
||
start_str: str = ""
|
||
if hasattr(once, "start_date") and once.start_date:
|
||
if isinstance(once.start_date, datetime):
|
||
start_str = once.start_date.strftime("%Y-%m-%d %H:%M:%S")
|
||
else:
|
||
start_str = once.start_date
|
||
|
||
return {
|
||
"chat_mode": once.chat_mode,
|
||
"model_name": once.model_name,
|
||
"chat_order": once.chat_order,
|
||
"start_date": start_str,
|
||
"cost": once.cost if once.cost else 0,
|
||
"tokens": once.tokens if once.tokens else 0,
|
||
"messages": _messages_to_dict(once.messages),
|
||
"param_type": once.param_type,
|
||
"param_value": once.param_value,
|
||
"user_name": once.user_name,
|
||
"sys_code": once.sys_code,
|
||
"summary": once.summary if once.summary else "",
|
||
}
|
||
|
||
|
||
def _conversations_to_dict(conversations: List[OnceConversation]) -> List[dict]:
|
||
return [_conversation_to_dict(m) for m in conversations]
|
||
|
||
|
||
def _conversation_from_dict(once: dict) -> OnceConversation:
|
||
conversation = OnceConversation(
|
||
once.get("chat_mode"), once.get("user_name"), once.get("sys_code")
|
||
)
|
||
conversation.cost = once.get("cost", 0)
|
||
conversation.chat_mode = once.get("chat_mode", "chat_normal")
|
||
conversation.tokens = once.get("tokens", 0)
|
||
conversation.start_date = once.get("start_date", "")
|
||
conversation.chat_order = int(once.get("chat_order"))
|
||
conversation.param_type = once.get("param_type", "")
|
||
conversation.param_value = once.get("param_value", "")
|
||
conversation.model_name = once.get("model_name", "proxyllm")
|
||
print(once.get("messages"))
|
||
conversation.messages = _messages_from_dict(once.get("messages", []))
|
||
return conversation
|