Files
DB-GPT/pilot/source_embedding/knowledge_embedding.py

137 lines
5.3 KiB
Python
Raw Blame History

import os
from typing import Optional
import markdown
from bs4 import BeautifulSoup
from langchain.document_loaders import PyPDFLoader, TextLoader
from langchain.embeddings import HuggingFaceEmbeddings
from pilot.configs.config import Config
from pilot.configs.model_config import DATASETS_DIR, KNOWLEDGE_CHUNK_SPLIT_SIZE
from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter
from pilot.source_embedding.csv_embedding import CSVEmbedding
from pilot.source_embedding.markdown_embedding import MarkdownEmbedding
from pilot.source_embedding.pdf_embedding import PDFEmbedding
from pilot.source_embedding.url_embedding import URLEmbedding
from pilot.source_embedding.word_embedding import WordEmbedding
from pilot.vector_store.connector import VectorStoreConnector
CFG = Config()
KnowledgeEmbeddingType = {
".txt": (MarkdownEmbedding, {}),
".md": (MarkdownEmbedding,{}),
".pdf": (PDFEmbedding, {}),
".doc": (WordEmbedding, {}),
".docx": (WordEmbedding, {}),
".csv": (CSVEmbedding, {}),
}
class KnowledgeEmbedding:
def __init__(
self,
model_name,
vector_store_config,
file_type: Optional[str] = "default",
file_path: Optional[str] = None,
):
"""Initialize with Loader url, model_name, vector_store_config"""
self.file_path = file_path
self.model_name = model_name
self.vector_store_config = vector_store_config
self.file_type = file_type
self.embeddings = HuggingFaceEmbeddings(model_name=self.model_name)
self.vector_store_config["embeddings"] = self.embeddings
def knowledge_embedding(self):
self.knowledge_embedding_client = self.init_knowledge_embedding()
self.knowledge_embedding_client.source_embedding()
def knowledge_embedding_batch(self):
self.knowledge_embedding_client.batch_embedding()
def init_knowledge_embedding(self):
if self.file_type == "url":
embedding = URLEmbedding(
file_path=self.file_path,
model_name=self.model_name,
vector_store_config=self.vector_store_config,
)
return embedding
extension = "." + self.file_path.rsplit(".", 1)[-1]
if extension in KnowledgeEmbeddingType:
knowledge_class, knowledge_args = KnowledgeEmbeddingType[extension]
embedding = knowledge_class(self.file_path, model_name=self.model_name, vector_store_config=self.vector_store_config, **knowledge_args)
return embedding
raise ValueError(f"Unsupported knowledge file type '{extension}'")
return embedding
def similar_search(self, text, topk):
vector_client = VectorStoreConnector(CFG.VECTOR_STORE_TYPE, self.vector_store_config)
return vector_client.similar_search(text, topk)
def vector_exist(self):
vector_client = VectorStoreConnector(
CFG.VECTOR_STORE_TYPE, self.vector_store_config
)
return vector_client.vector_name_exists()
def knowledge_persist_initialization(self, append_mode):
documents = self._load_knownlege(self.file_path)
self.vector_client = VectorStoreConnector(
CFG.VECTOR_STORE_TYPE, self.vector_store_config
)
self.vector_client.load_document(documents)
return self.vector_client
def _load_knownlege(self, path):
docments = []
for root, _, files in os.walk(path, topdown=False):
for file in files:
filename = os.path.join(root, file)
docs = self._load_file(filename)
new_docs = []
for doc in docs:
doc.metadata = {
"source": doc.metadata["source"].replace(DATASETS_DIR, "")
}
print("doc is embedding...", doc.metadata)
new_docs.append(doc)
docments += new_docs
return docments
def _load_file(self, filename):
if filename.lower().endswith(".md"):
loader = TextLoader(filename)
text_splitter = CHNDocumentSplitter(
pdf=True, sentence_size=KNOWLEDGE_CHUNK_SPLIT_SIZE
)
docs = loader.load_and_split(text_splitter)
i = 0
for d in docs:
content = markdown.markdown(d.page_content)
soup = BeautifulSoup(content, "html.parser")
for tag in soup(["!doctype", "meta", "i.fa"]):
tag.extract()
docs[i].page_content = soup.get_text()
docs[i].page_content = docs[i].page_content.replace("\n", " ")
i += 1
elif filename.lower().endswith(".pdf"):
loader = PyPDFLoader(filename)
textsplitter = CHNDocumentSplitter(
pdf=True, sentence_size=KNOWLEDGE_CHUNK_SPLIT_SIZE
)
docs = loader.load_and_split(textsplitter)
i = 0
for d in docs:
docs[i].page_content = d.page_content.replace("\n", " ").replace(
"<EFBFBD>", ""
)
i += 1
else:
loader = TextLoader(filename)
text_splitor = CHNDocumentSplitter(sentence_size=KNOWLEDGE_CHUNK_SPLIT_SIZE)
docs = loader.load_and_split(text_splitor)
return docs