Files
DB-GPT/dbgpt/rag/graph/graph_engine.py
2024-01-14 21:01:37 +08:00

149 lines
5.6 KiB
Python

import logging
from typing import Any, Callable, List, Optional, Tuple
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from dbgpt.rag.embedding import KnowledgeType
from dbgpt.rag.embedding.knowledge_type import get_knowledge_embedding
from dbgpt.rag.graph.index_struct import KG
from dbgpt.rag.graph.node import TextNode
from dbgpt.util import utils
logger = logging.getLogger(__name__)
class RAGGraphEngine:
"""Knowledge RAG Graph Engine.
Build a RAG Graph Client can extract triplets and insert into graph store.
Args:
knowledge_type (Optional[str]): Default: KnowledgeType.DOCUMENT.value
extracting triplets.
knowledge_source (Optional[str]):
model_name (Optional[str]): llm model name
graph_store (Optional[GraphStore]): The graph store to use.refrence:llama-index
include_embeddings (bool): Whether to include embeddings in the index.
Defaults to False.
max_object_length (int): The maximum length of the object in a triplet.
Defaults to 128.
extract_triplet_fn (Optional[Callable]): The function to use for
extracting triplets. Defaults to None.
"""
index_struct_cls = KG
def __init__(
self,
knowledge_type: Optional[str] = KnowledgeType.DOCUMENT.value,
knowledge_source: Optional[str] = None,
text_splitter=None,
graph_store=None,
index_struct: Optional[KG] = None,
model_name: Optional[str] = None,
max_triplets_per_chunk: int = 10,
include_embeddings: bool = False,
max_object_length: int = 128,
extract_triplet_fn: Optional[Callable] = None,
**kwargs: Any,
) -> None:
"""Initialize params."""
from llama_index.graph_stores import SimpleGraphStore
# need to set parameters before building index in base class.
self.knowledge_source = knowledge_source
self.knowledge_type = knowledge_type
self.model_name = model_name
self.text_splitter = text_splitter
self.index_struct = index_struct
self.include_embeddings = include_embeddings
self.graph_store = graph_store or SimpleGraphStore()
# self.graph_store = graph_store
self.max_triplets_per_chunk = max_triplets_per_chunk
self._max_object_length = max_object_length
self._extract_triplet_fn = extract_triplet_fn
def knowledge_graph(self, docs=None):
"""knowledge docs into graph store"""
if not docs:
if self.text_splitter:
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=2000, chunk_overlap=100
)
knowledge_source = get_knowledge_embedding(
knowledge_type=self.knowledge_type,
knowledge_source=self.knowledge_source,
text_splitter=self.text_splitter,
)
docs = knowledge_source.read()
if self.index_struct is None:
self.index_struct = self._build_index_from_docs(docs)
def _extract_triplets(self, text: str) -> List[Tuple[str, str, str]]:
"""Extract triplets from text by function or llm"""
if self._extract_triplet_fn is not None:
return self._extract_triplet_fn(text)
else:
return self._llm_extract_triplets(text)
def _llm_extract_triplets(self, text: str) -> List[Tuple[str, str, str]]:
"""Extract triplets from text by llm"""
import uuid
from dbgpt.app.scene import ChatScene
from dbgpt.util.chat_util import llm_chat_response_nostream
chat_param = {
"chat_session_id": uuid.uuid1(),
"current_user_input": text,
"select_param": "triplet",
"model_name": self.model_name,
}
loop = utils.get_or_create_event_loop()
triplets = loop.run_until_complete(
llm_chat_response_nostream(
ChatScene.ExtractTriplet.value(), **{"chat_param": chat_param}
)
)
return triplets
def _build_index_from_docs(self, documents: List[Document]) -> KG:
"""Build the index from nodes.
Args:documents:List[Document]
"""
index_struct = self.index_struct_cls()
triplets = []
for doc in documents:
trips = self._extract_triplets_task([doc], index_struct)
triplets.extend(trips)
print(triplets)
text_node = TextNode(text=doc.page_content, metadata=doc.metadata)
for triplet in triplets:
subj, _, obj = triplet
self.graph_store.upsert_triplet(*triplet)
index_struct.add_node([subj, obj], text_node)
return index_struct
def search(self, query):
from dbgpt.rag.graph.graph_search import RAGGraphSearch
graph_search = RAGGraphSearch(graph_engine=self)
return graph_search.search(query)
def _extract_triplets_task(self, docs, index_struct):
triple_results = []
for doc in docs:
import threading
thread_id = threading.get_ident()
print(f"current thread-{thread_id} begin extract triplets task")
triplets = self._extract_triplets(doc.page_content)
if len(triplets) == 0:
triplets = []
text_node = TextNode(text=doc.page_content, metadata=doc.metadata)
logger.info(f"extracted knowledge triplets: {triplets}")
print(
f"current thread-{thread_id} end extract triplets tasks, triplets-{triplets}"
)
triple_results.extend(triplets)
return triple_results