Files
DB-GPT/dbgpt/util/benchmarks/llm/llm_benchmarks.py
2023-12-08 14:45:59 +08:00

283 lines
9.1 KiB
Python

from typing import Dict, List
import asyncio
import os
import sys
import time
import csv
import argparse
import logging
import traceback
from dbgpt.configs.model_config import ROOT_PATH, LLM_MODEL_CONFIG
from datetime import datetime
from dbgpt.model.cluster.worker.manager import (
run_worker_manager,
initialize_worker_manager_in_client,
WorkerManager,
)
from dbgpt.core import ModelOutput, ModelInferenceMetrics
from dbgpt.core.interface.message import ModelMessage, ModelMessageRoleType
model_name = "vicuna-7b-v1.5"
model_path = LLM_MODEL_CONFIG[model_name]
# or vllm
model_type = "huggingface"
controller_addr = "http://127.0.0.1:5000"
result_csv_file = None
parallel_nums = [1, 2, 4, 16, 32]
# parallel_nums = [1, 2, 4]
def get_result_csv_file() -> str:
return os.path.join(
ROOT_PATH, f"pilot/data/{model_name}_{model_type}_benchmarks_llm.csv"
)
input_lens = [64, 64]
output_lens = [256, 512]
prompt_file_map = {
"11k": os.path.join(
ROOT_PATH, "docker/examples/benchmarks/benchmarks_llm_11k_prompt.txt"
)
}
METRICS_HEADERS = [
# Params
"model_name",
"gpu_nums",
"parallel_nums",
"input_length",
"output_length",
# Merge parallel result
"test_time_cost_ms",
"test_total_tokens",
# avg_test_speed_per_second: (tokens / s), test_total_tokens / (test_time_cost_ms / 1000.0)
"avg_test_speed_per_second(tokens/s)",
# avg_first_token_latency_ms: sum(first_token_time_ms) / parallel_nums
"avg_first_token_latency_ms",
# avg_latency_ms: sum(end_time_ms - start_time_ms) / parallel_nums
"avg_latency_ms",
"gpu_mem(GiB)",
# Detail for each task
"start_time_ms",
"end_time_ms",
"current_time_ms",
"first_token_time_ms",
"first_completion_time_ms",
"first_completion_tokens",
"prompt_tokens",
"completion_tokens",
"total_tokens",
"speed_per_second",
]
def read_prompt_from_file(file_key: str) -> str:
full_path = prompt_file_map[file_key]
with open(full_path, "r+", encoding="utf-8") as f:
return f.read()
def build_param(
input_len: int,
output_len: int,
user_input: str,
system_prompt: str = None,
) -> Dict:
hist = []
if system_prompt is not None:
hist.append(
ModelMessage(role=ModelMessageRoleType.SYSTEM, content=system_prompt)
)
hist.append(ModelMessage(role=ModelMessageRoleType.HUMAN, content=user_input))
hist = list(h.dict() for h in hist)
context_len = input_len + output_len + 2
params = {
"prompt": user_input,
"messages": hist,
"model": model_name,
"echo": False,
"max_new_tokens": output_len,
"context_len": context_len,
}
return params
async def run_batch(
wh: WorkerManager,
input_len: int,
output_len: int,
parallel_num: int,
output_file: str,
):
tasks = []
prompt = read_prompt_from_file("11k")
if model_type == "vllm":
max_input_str_len = input_len
if "baichuan" in model_name:
# TODO prompt handle first
max_input_str_len *= 2
prompt = prompt[-max_input_str_len:]
# Warmup first
params = build_param(input_len, output_len, prompt, system_prompt="")
await wh.generate(params)
for _ in range(parallel_num):
params = build_param(input_len, output_len, prompt, system_prompt="")
tasks.append(wh.generate(params))
print(
f"Begin run benchmarks, model name: {model_name}, input_len: {input_len}, output_len: {output_len}, parallel_num: {parallel_num}, save result to {output_file}"
)
start_time_ms = time.time_ns() // 1_000_000
results: List[ModelOutput] = await asyncio.gather(*tasks)
end_time_ms = time.time_ns() // 1_000_000
test_time_cost_ms = end_time_ms - start_time_ms
test_total_tokens = 0
first_token_latency_ms = 0
latency_ms = 0
gpu_nums = 0
avg_gpu_mem = 0
rows = []
for r in results:
metrics = r.metrics
if isinstance(metrics, dict):
metrics = ModelInferenceMetrics(**metrics)
print(r)
test_total_tokens += metrics.total_tokens
first_token_latency_ms += metrics.first_token_time_ms - metrics.start_time_ms
latency_ms += metrics.end_time_ms - metrics.start_time_ms
row_data = metrics.to_dict()
del row_data["collect_index"]
if "avg_gpu_infos" in row_data:
avg_gpu_infos = row_data["avg_gpu_infos"]
gpu_nums = len(avg_gpu_infos)
avg_gpu_mem = (
sum(i["allocated_memory_gb"] for i in avg_gpu_infos) / gpu_nums
)
del row_data["avg_gpu_infos"]
del row_data["current_gpu_infos"]
rows.append(row_data)
avg_test_speed_per_second = test_total_tokens / (test_time_cost_ms / 1000.0)
avg_first_token_latency_ms = first_token_latency_ms / len(results)
avg_latency_ms = latency_ms / len(results)
with open(output_file, "a", newline="", encoding="utf-8") as f:
writer = csv.DictWriter(f, fieldnames=METRICS_HEADERS)
if f.tell() == 0:
# Fist time
writer.writeheader()
for row in rows:
row["model_name"] = model_name
row["parallel_nums"] = parallel_num
row["input_length"] = input_len
row["output_length"] = output_len
row["test_time_cost_ms"] = test_time_cost_ms
row["test_total_tokens"] = test_total_tokens
row["avg_test_speed_per_second(tokens/s)"] = avg_test_speed_per_second
row["avg_first_token_latency_ms"] = avg_first_token_latency_ms
row["avg_latency_ms"] = avg_latency_ms
row["gpu_nums"] = gpu_nums
row["gpu_mem(GiB)"] = avg_gpu_mem
writer.writerow(row)
print(
f"input_len: {input_len}, output_len: {output_len}, parallel_num: {parallel_num}, save result to {output_file}"
)
async def run_model(wh: WorkerManager) -> None:
global result_csv_file
if not result_csv_file:
result_csv_file = get_result_csv_file()
if os.path.exists(result_csv_file):
now = datetime.now()
now_str = now.strftime("%Y-%m-%d")
os.rename(result_csv_file, f"{result_csv_file}.bak_{now_str}.csv")
for parallel_num in parallel_nums:
for input_len, output_len in zip(input_lens, output_lens):
try:
await run_batch(
wh, input_len, output_len, parallel_num, result_csv_file
)
except Exception:
msg = traceback.format_exc()
logging.error(
f"Run benchmarks error, input_len: {input_len}, output_len: {output_len}, parallel_num: {parallel_num}, error message: {msg}"
)
if "torch.cuda.OutOfMemoryError" in msg:
return
sys.exit(0)
def startup_llm_env():
from fastapi import FastAPI
app = FastAPI()
initialize_worker_manager_in_client(
app=app,
model_name=model_name,
model_path=model_path,
run_locally=False,
controller_addr=controller_addr,
local_port=6000,
start_listener=run_model,
)
def connect_to_remote_model():
startup_llm_env()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, default=model_name)
parser.add_argument("--model_path", type=str, default=None)
parser.add_argument("--model_type", type=str, default="huggingface")
parser.add_argument("--result_csv_file", type=str, default=None)
parser.add_argument("--input_lens", type=str, default="8,8,256,1024")
parser.add_argument("--output_lens", type=str, default="256,512,1024,1024")
parser.add_argument("--parallel_nums", type=str, default="1,2,4,16,32")
parser.add_argument(
"--remote_model", type=bool, default=False, help="Connect to remote model"
)
parser.add_argument("--controller_addr", type=str, default="http://127.0.0.1:8000")
parser.add_argument("--limit_model_concurrency", type=int, default=200)
args = parser.parse_args()
print(f"args: {args}")
model_name = args.model_name
model_path = args.model_path or LLM_MODEL_CONFIG[model_name]
result_csv_file = args.result_csv_file
input_lens = [int(i) for i in args.input_lens.strip().split(",")]
output_lens = [int(i) for i in args.output_lens.strip().split(",")]
parallel_nums = [int(i) for i in args.parallel_nums.strip().split(",")]
remote_model = args.remote_model
controller_addr = args.controller_addr
limit_model_concurrency = args.limit_model_concurrency
model_type = args.model_type
if len(input_lens) != len(output_lens):
raise ValueError("input_lens size must equal output_lens size")
if remote_model:
# Connect to remote model and run benchmarks
connect_to_remote_model()
else:
# Start worker manager and run benchmarks
run_worker_manager(
model_name=model_name,
model_path=model_path,
start_listener=run_model,
limit_model_concurrency=limit_model_concurrency,
model_type=model_type,
)