mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-28 13:00:02 +00:00
50 lines
1.7 KiB
Python
50 lines
1.7 KiB
Python
from typing import List
|
|
|
|
from bs4 import BeautifulSoup
|
|
from langchain.document_loaders import WebBaseLoader
|
|
from langchain.schema import Document
|
|
from langchain.text_splitter import CharacterTextSplitter
|
|
|
|
from pilot.configs.config import Config
|
|
from pilot.configs.model_config import KNOWLEDGE_CHUNK_SPLIT_SIZE
|
|
from pilot.source_embedding import SourceEmbedding, register
|
|
from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter
|
|
|
|
CFG = Config()
|
|
|
|
|
|
class URLEmbedding(SourceEmbedding):
|
|
"""url embedding for read url document."""
|
|
|
|
def __init__(self, file_path, vector_store_config):
|
|
"""Initialize with url path."""
|
|
super().__init__(file_path, vector_store_config)
|
|
self.file_path = file_path
|
|
self.vector_store_config = vector_store_config
|
|
|
|
@register
|
|
def read(self):
|
|
"""Load from url path."""
|
|
loader = WebBaseLoader(web_path=self.file_path)
|
|
if CFG.LANGUAGE == "en":
|
|
text_splitter = CharacterTextSplitter(
|
|
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
|
chunk_overlap=20,
|
|
length_function=len,
|
|
)
|
|
else:
|
|
text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=1000)
|
|
return loader.load_and_split(text_splitter)
|
|
|
|
@register
|
|
def data_process(self, documents: List[Document]):
|
|
i = 0
|
|
for d in documents:
|
|
content = d.page_content.replace("\n", "")
|
|
soup = BeautifulSoup(content, "html.parser")
|
|
for tag in soup(["!doctype", "meta"]):
|
|
tag.extract()
|
|
documents[i].page_content = soup.get_text()
|
|
i += 1
|
|
return documents
|